Euler originally derived this by partial fraction decomposition. The derivation can be found on this site: http://www.17centurymaths.com/contents/integralcalculus.html. For the later steps, see Vol 1, Sec 1, Chap 8. For the partial fraction decomposition, see Vol 1, Sec 1, Chap 1.
$$
\int_0^{\infty} \frac{x^{m-1}}{1+x^n} dx = \frac{\pi}{n \sin (m \pi / n ) }
$$
- The roots of $x^n + 1 = 0 $ is $ x = e^{i \varphi_k} $ where
$$
\begin{eqnarray}
\varphi_k &=& \pm \frac{2k-1}{n} \pi ~~\left(n:\textrm{even}, k = 1,2, .., \frac{n}{2}\right)\\
\varphi_k &=& \pm \frac{2k-1}{n} \pi, \pi ~~\left(n:\textrm{odd}, k = 1,2, ..,\frac{n-1}{2} \right)
\end{eqnarray}
$$
Combining conjugates, $x^n+1$ can be factored as
$$
\begin{eqnarray}
x^n + 1 &=& \prod_k^{\frac{n}{2}}(x^2-2 x \cos \varphi_k + 1) ~~(n:\textrm{even}) \\
x^n + 1 &=& (x+1) \prod_k^{\frac{n-1}{2}}(x^2-2 x \cos \varphi_k + 1) ~~(n:\textrm{odd})
\end{eqnarray}
$$
Suppose $x^n + 1 = (x^2 - 2 x \cos \varphi + 1) S(x)$. Consider the following partial fractions.
$$
\frac{x^{m-1}}{x^n+1} = \frac{A x + B}{x^2-2x \cos \varphi + 1} + \frac{V(x)}{S(x)}
$$
where A,B are real numbers
- multiply $x^n + 1$ to both sides and substitute $x = e^{i \varphi}$.
$$
e^{i (m-1) \varphi} = (A e^{i \varphi} + B)S(e^{i \varphi})
$$
This looks like an equation with 2 unknown variables, but it is actually solvable because it is an equation of complex numbers and we constrain A and B to be real numbers.
- define following notation for convenience.
$$
\begin{eqnarray}
a \cdot b &=& \frac{\overline{a} b + a \overline{b}}{2} \\
a \times b &=& \frac{\overline{a} b - a \overline{b}}{2 i}
\end{eqnarray}
$$
where $\overline{a}$ is a complex conjugate of $a$.
Following relations can be found
$$
\begin{eqnarray}
a \cdot a &=& |a|^2 \\
a \times a &=& 0 \\
a \cdot a e^{i \theta} &=& |a|^2 \cos \theta \\
a \times a e^{i \theta} &=& |a|^2 \sin \theta \\
e^{i \theta_1} \cdot e^{i \theta_2} &=& \cos (\theta_2 - \theta_1) \\
e^{i \theta_1} \times e^{i \theta_2} &=& \sin (\theta_2 - \theta_1)
\end{eqnarray}
$$
- let $s = S(e^{i \phi})$, Using relations in 5, 4 can be solved as
$$
\begin{eqnarray}
A &=& \frac{s \times e^{i (m-1) \varphi}}{|s|^2 \sin \varphi} \\
B &=& \frac{1}{|s|^2 \sin \varphi} \left(s\cdot e^{i (m-1) \varphi} \sin \varphi - s \times e^{i (m-1) \varphi} \cos \varphi \right)
\end{eqnarray}
$$
find s as follows.
$$
\begin{eqnarray}
s &=& \frac{x^n + 1}{x^2 - 2 x \cos \varphi + 1} \Big|_{x \to x^{i \varphi}} \\
&=& \frac{n}{2} \frac{e^{i (n-1) \varphi}}{i \sin \varphi}
\end{eqnarray}
$$
$$
\begin{eqnarray}
s \cdot e^{i (m-1) \varphi} &=& \frac{n \sin (n-m) \varphi}{2 \sin \varphi}
\\
s \times e^{i (m-1) \varphi} &=& \frac{n \cos (n-m) \varphi}{2 \sin \varphi}
\end{eqnarray}
$$
- Using 8, from 6,
$$
\begin{eqnarray}
A &=& \frac{2 \cos (n-m) \varphi}{n}
\\
B &=& - \frac{2 \cos (n-m + 1) \varphi}{n}
\end{eqnarray}
$$
Using $n \varphi = (2k-1) \pi$,
\begin{eqnarray}
A &=& - \frac{2 \cos m \varphi}{n}
\\
B &=& \frac{2 \cos (m - 1) \varphi}{n}
\end{eqnarray}
- Thus partial fraction decomposition of $\frac{x^{m-1}}{x^n+1}$ is
$$
\begin{eqnarray}
\frac{x^{m-1}}{x^n+1} &=& \frac{2}{n} \sum_{k=1}^{\frac{n}{2}} \frac{- x \cos m \varphi_k + \cos (m-1) \varphi_k }{x^2 - 2 x \cos \varphi_k + 1} ~~ (n:\textrm{even})
\\
\frac{x^{m-1}}{x^n+1} &=& \frac{2}{n} \sum_{k=1}^{\frac{n-1}{2}} \frac{- x \cos m \varphi_k + \cos (m-1) \varphi_k }{x^2 - 2 x \cos \varphi_k + 1} + \frac{1}{n} \frac{(-1)^{m-1}}{x+1}~~ (n:\textrm{odd})
\end{eqnarray}
$$
where $\varphi_k = \frac{2k-1}{n} \pi$
11.
$$
- x \cos m \varphi + \cos (m-1) \varphi = -(x - \cos \varphi) \cos m \varphi + \sin m \varphi \sin \varphi
$$
12.
$$
\int \frac{-(x- \cos \varphi)}{x^2 - 2 x \cos \varphi + 1} dx = \log \left(\frac{1}{\sqrt{x^2 - 2x \cos \varphi + 1}}\right) + C
$$
13.
$$
\int \frac{\sin \varphi}{x^2 - 2 x \cos \varphi + 1} dx = \arctan\left(\frac{x- \cos \varphi}{\sin \varphi}\right) + C
$$
by introducing new C so that $C \to C + \arctan(\frac{\cos \varphi}{\sin \varphi})$
$$
\int \frac{\sin \varphi}{x^2 - 2 x \cos \varphi + 1} dx = \arctan\left(\frac{\sin \varphi}{1/x - \cos \varphi}\right) + C
$$
- let $A_k(x) = \log \left(\frac{1}{\sqrt{x^2 - 2x \cos \varphi_k +1}}\right)$, $B_k(x)= \arctan \left(\frac{\sin \varphi_k}{1/x - \cos \varphi_k}\right)$ then
$$
\begin{eqnarray}
\int \frac{x^{m-1}}{x^n+1} dx &=& \frac{2}{n} \sum_{k=1}^{\frac{n}{2}} \left(\cos m \varphi_k A_k(x) + \sin m \varphi_k B_k(x)\right) ~~ (n:\textrm{even})
\\
\int \frac{x^{m-1}}{x^n+1} dx &=& \frac{2}{n} \sum_{k=1}^{\frac{n-1}{2}} \left(\cos m \varphi_k A_k(x) + \sin m \varphi_k B_k(x)\right) + \frac{(-1)^{m-1}}{n} \log(x+1) ~~ (n:\textrm{odd})
\end{eqnarray}
$$
15.
$$
\lim_{x \to \infty} \sum_{k}^{N} \cos m \varphi_k A_k(x)
= \lim_{x \to \infty}(- \log x) \sum_k^{N}\cos m \varphi_k
$$
- When x moves from 0 to $\infty$ continuously, $B_k(x)$ must move from 0 to $\pi - \varphi_k$. Not 0 to -$\varphi_k$. Thus
$$
\lim_{x \to \infty} \sum_{k}^{N} \sin m \varphi_k B_k(x)
= \sum_{k}^{N} (\pi - \varphi) \sin m \varphi_k
$$
Let $\omega = \frac{m \pi}{n}$, define S,T,U as follows
$$
\begin{eqnarray}
S &=& \sum_{k=1}^{N} \cos m \varphi_k = \sum_{k=1}^{N} \cos (2k -1) \omega \\
T &=& \sum_{k=1}^{N} \sin m \varphi_k = \sum_{k=1}^{N} \sin (2k -1) \omega
\\
U &=& \sum_{k=1}^{N} \varphi_k \sin m \varphi_k = \frac{\pi}{n} \sum_{k=1}^{N} (2k-1) \sin (2k -1) \omega
\end{eqnarray}
$$
multiply $\sin \omega$ on 17-1,17-2 then it can be shown that
$$
\begin{eqnarray}
S &=& \frac{\sin 2 N \omega }{2 \sin \omega} \\
T &=& \frac{1 - \cos 2 N \omega}{2 \sin \omega}
\end{eqnarray}
$$
- By differentiating 17-1 with respect to $\omega$,
$$
U = \frac{\pi}{2 n \sin \omega} \left(\frac{\sin (2 N - 1) \omega}{\sin \omega} - (2N - 1) \cos 2 N \omega \right)
$$
20.
$$
\lim_{x \to \infty} \frac{2}{n} \sum_{k=1}^{N} \left(\cos m \varphi_k A_k(x) + \sin m \varphi_k B_k(x)\right) \\
= \frac{2}{n} \left(S \lim_{x \to \infty} (- \log x) + \pi T- U\right)
$$
- combining the results from 14,18,19,20, and substituting $2N = n $ for the case of even n, and $2N = n-1 $ for odd n, it can be shown that
$$
\int_0^{\infty} \frac{x^{m-1}}{1+x^n} dx = \frac{\pi}{n \sin (m \pi / n ) }
$$