$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Lets $\ds{\mu \equiv {a \over 2\beta}\,,\ \nu \equiv {b \over 2\beta}}$:
\begin{align}
\mc{I} & \equiv
\int_{0}^{\infty}{\cos\pars{ax} - \cos\pars{bx} \over \sinh\pars{\beta x}}
\,{\dd x \over x} =
\int_{0}^{\infty}{\cos\pars{2\mu x} - \cos\pars{2\nu x} \over \sinh\pars{x}}
\,{\dd x \over x}
\\[5mm] & =
2\,\Re\int_{0}^{\infty}
{\expo{-2\ic\mu x} - \expo{-2\ic\nu x} \over 1 - \expo{-2x}}\expo{-x}
{\dd x \over x}
\,\,\,\stackrel{\expo{-2x}\ =\ t}{=}\,\,\,
2\,\Re\int_{1}^{0}{t^{\ic\mu} - t^{\ic\nu} \over 1 - t}\,t^{1/2}\,
{-\dd t/\pars{2t} \over \ln\pars{t}/\pars{-2}}
\\[5mm] & =
-2\,\Re\int_{0}^{1}{t^{-1/2 + \ic\mu} - t^{-1/2 + \ic\nu} \over 1 - t}\,
{\dd t \over \ln\pars{t}} =
2\,\Re\int_{0}^{1}{t^{-1/2 + \ic\mu} - t^{-1/2 + \ic\nu} \over 1 - t}
\int_{0}^{\infty}t^{\xi}\,\dd\xi\,\dd t
\\[5mm] & =
2\,\Re\int_{0}^{\infty}\bracks{%
\int_{0}^{1}{1 - t^{\xi -1/2 + \ic\nu} \over 1 -t}\,\dd t -
\int_{0}^{1}{1 - t^{\xi -1/2 + \ic\mu} \over 1 -t}\,\dd t}\dd\xi
\\[5mm] & =
2\,\Re\int_{0}^{\infty}\bracks{%
\Psi\pars{\xi + {1 \over 2} + \ic\nu} - \Psi\pars{\xi + {1 \over 2} + \ic\mu}}
\dd\xi =
\left.2\,\Re
\ln\pars{\Gamma\pars{\xi + 1/2 + \ic\nu} \over \Gamma\pars{\xi + 1/2 + \ic\mu}}
\right\vert_{\ \xi\ =\ 0}^{\ \xi\ \to\ \infty}
\\[5mm] & =
2\,\Re\ln\pars{\Gamma\pars{1/2 + \ic\mu} \over \Gamma\pars{1/2 + \ic\nu}} =
\ln\pars{\verts{\Gamma\pars{{1 \over 2} + \ic\mu}}^{2}} -
\ln\pars{\verts{\Gamma\pars{{1 \over 2} + \ic\nu}}^{2}}
\\[5mm] & =
\ln\pars{\pi \over \cosh\pars{\pi\mu}} -
\ln\pars{\pi \over \cosh\pars{\pi\nu}} =
\ln\pars{\cosh\pars{\pi\nu} \over \cosh\pars{\pi\mu}} =
\bbx{\ds{\ln\pars{\cosh\pars{\pi b \over 2\beta} \over
\cosh\pars{\pi a \over 2\beta}}}}
\end{align}