The induction step simply lifts up the Bezout identity for the gcd by $\rm\color{#c00}{eliminating}$ the remainder
$\quad \color{#0a0}{a = q a'}\color{#c00}{ + a''} \Rightarrow\, \gcd(a,a') = \gcd(a',a'')$
$\quad\ \ {\rm induction}\ \Rightarrow\,\ \gcd(a',a'') = j\, a' + k\, \color{#c00}{a''} = {\rm linear\ combination\ of}\ a',a''\ {\rm (Bezout)}$
$\quad\begin{eqnarray}{\rm elmination}\,\Rightarrow\ \gcd(a,a') &\,=\,& j\, a' + k (\color{#0a0}{a\!-\!qa'})\ \ {\rm by}\ \ \rm\color{#c00}{eliminating\,\ a''} =\, \rm remainder\\ \\ &=& k\, a + (j\! -\!kq)\, a' = {\rm linear\ combination\ of}\ a,a'\ {\rm (Bezout)}\end{eqnarray}$
Therefore, when the gcd $\, = 1 = k\, a + n\, a'\,$ then $\, 1 \equiv k a\pmod{a'},\,$ so $\ a^{-1}\equiv k.$
The method in the linked article employs the same Euclidean remainder sequence as the standard back-substitution extended Euclidean algorithm. The only difference is that it explicitly writes out the equations connecting the steps, which apparently makes the back substituion simpler for you.
The back-substution process is notoriously error-prone. A better way to eliminate the complex back-substitution process is to forward propagate the Bezout identities by using $ $ row operations, see this answer. For further optimization one can employ least magnitude remainders, i.e. allow negative remainders, which generally halves the length of the remainder sequence, e.g. here.