Hint $\ $ A solution exists of $\ x\equiv a_i \pmod{m_i}\iff a_i\equiv a_j \pmod{\gcd(m_i,m_j)}\ $ for all $\,i,j.$
This yields $\ {\rm mod}\ 5\!:\ 0\equiv a^2-a = \color{#c00}a(a-\color{#c00}1),\,$ $\ {\rm mod}\ 7\!:\ 0\equiv a^2-3a+2\equiv (a-\color{#0a0}1)(a-\color{#0a0}2).\,$
Hence the system is solvable iff $\ a\equiv \color{#c00}{0\ \ {\rm or}\ \ 1\pmod{5}}\ \ \ $ and $\ \ \ a\equiv\color{#0a0}{1 \ \ {\rm or}\ \ 2\pmod{7}}$.
This yields $4$ possible combinations $\ {\rm mod}\ (\color{#c00}5,\color{#0a0}7)\!:\,\ a\equiv (\color{#c00}0,\color{#0a0}1),\, (\color{#c00}0,\color{#0a0}2),\, (\color{#c00}1,\color{#0a0}1),\, (\color{#c00}1,\color{#0a0}2)$ which, by CRT, yields $4$ values mod $35,\,$ namely
$\quad {\rm mod}\ (\color{#c00}5,\color{#0a0}7)\!:\,\ a\equiv (\color{#c00}1,\color{#0a0}1)\iff \color{#c00}5,\color{#0a0}7\mid a-1\iff 35\mid a-1\iff a\equiv \ 1\ \pmod{35}$
$\quad {\rm mod}\ (\color{#c00}5,\color{#0a0}7)\!:\,\ a\equiv (\color{#c00}0,\color{#0a0}1)\iff \!a=\color{#c00}5n\ \ \&\ \ a\in \{\color{#0a0}{1,8,15,\ldots}\}\iff a\equiv \color{orange}{15}\pmod{35}$
$\quad {\rm mod}\ (\color{#c00}5,\color{#0a0}7)\!:\,\ a\equiv (\color{#c00}0,\color{#0a0}2) = (0,1)+(0,1)\iff a\equiv \color{orange}{15}+\color{orange}{15}\equiv 30\pmod{35}$
$\quad {\rm mod}\ (\color{#c00}5,\color{#0a0}7)\!:\,\ a\equiv (\color{#c00}1,\color{#0a0}2) = (1,1)+(0,1)\iff a\equiv \ 1\ +\color{orange}{15}\equiv 16\pmod{35}$
$a_1 = a$, $m_1 = 100$, $gcd(m_1, m_2)=5$,
$a_2 = a^2$, $m_2=35$, $gcd(m_1, m_3)=1$,
$a_3 = 3a-2$, $m_3=49$, $gcd(m_2, m_3)=7$
From there I formed the equations:
$$a \equiv a^2 (mod 5)$$ $$a \equiv 3a-2 (mod 1)$$ $$a^2 \equiv 3a-2 (mod 7) $$
The $(mod 1)$ is throwing me off being able to solve the equations from there, I feel like I've made a mistake in having that there.
– user142340 Apr 11 '14 at 01:18