Why does the result of cutting a Möbius strip down the middle lengthwise have two full twists in it? I can account for one full twist--the identification of the top left corner with the bottom right is a half twist; similarly, the top right corner and bottom left identification contributes another half twist. But where does the second full twist come from?
Explanations with examples or analogies drawn from real life much appreciated.
edit: I'm pasting J.M.'s Mathematica code here (see his answer), modified for version 5.2.
twist[{f_, g_}, a_, b_, u_] := {Cos[u] (a + f Cos[b u] - g Sin[b u]),
Sin[u] (a + f Cos[b u] - g Sin[b u]), g Cos[b u] + f Sin[b u]};
With[{a = 3, b = 1/2, f = 1/2},
Block[{$DisplayFunction = Identity},
g1 = ParametricPlot3D[Evaluate[Append[twist[{f - v, 0}, a, b, u],
{EdgeForm[], FaceForm[SurfaceColor[Red], SurfaceColor[Blue]]}]],
{u, 0, 2 Pi}, {v, 0, 2 f}, Axes -> None, Boxed -> False];
g2 = ParametricPlot3D[Evaluate[Append[twist[{f - v, 0}, a, b, u],
EdgeForm[]]], {u, 0, 4 Pi}, {v, 0, 2 f/3},
Axes -> None, Boxed -> False];
g3 = ParametricPlot3D[Evaluate[Append[twist[{f - v, 0}, a, b, u],
{EdgeForm[], FaceForm[SurfaceColor[Red], SurfaceColor[Blue]]}]],
{u, 0, 2 Pi}, {v, 2 f/3, 4 f/3}, Axes -> None, Boxed -> False,
PlotPoints -> 105]];
GraphicsArray[{{g1, Show[g2, g3]}}]];