This is the uniqueness theorem for linear differential equations. It is usually proved by variation of parameters using Wronskians, as is done below The proof below easily generalizes to higher order. An analogous proof works also for difference equations (recurrences).
Theorem $\ $ If $\rm\:f,g,h\: $ are solutions on an interval I of
$$\rm y'' =\ p\ y' + q\ y,\ \ \ \ p,q\ \ continuous\ on\ I $$
and the Wronskian $\rm\ \ W = g\:h'-g'h \ne 0\:$ for all $\rm\:x\in I$
then $\,\exists\,$ constants $\rm\: c,d\:$ such that $\rm\: f = c\: g + d\: h\:$ on $\rm\,I.$
Proof $\ $ The equations $[0],[1]$ below have unique solution $\rm\:(c,d)\:$ via det $\rm = W \ne 0\:$ on $\rm\,I.$
$\rm[0]\qquad f\ =\ c\: g \: + d\: h $
$\rm[1]\qquad f' =\ c\: g' + d\: h'$
Now $\rm\:q\:[0] + p\:[1]\ $ yields, $ $ on $ $ LHS: $\rm\,\ q\:f+p\:f'\: =\ f'',\ $ similar on RHS below
$\rm[2]\qquad f'' =\ c\: g'' + d\: h''\ $ via RHS: $\rm\ \, q\:g+p\:g'\: =\ g'',\,\ \ q\:h+p\:h'\: =\ h''$
$\rm[3]\qquad 0\ =\ c'\:g \:+ d'\:h\:\ \ $ via $\ \ [0]'-[1]$
$\rm[4]\qquad 0\ =\ c'\:g' + d'\:h'\ \ $ via $\ \ [1]'-[2]$
$[3],[4]\:$ have solution $\rm\:(c',d') = (0,0),\:$
which is unique by $\rm\ det = W = g\:h'-g'\:h \ne 0\:$ on $\rm\,I.\:$ Therefore $\rm\:c,d\:$ are constants. $\ \ $ QED
References
L. E. Pursell. A simple uniqueness theory for ordinary linear
homogeneous differential equations, Amer. Math. Monthly, 74, 1967, 47-50
Variation of Parameters:
https://planetmath.org/variationofparameters
http://ltcconline.net/greenl/courses/204/appsHigherOrder/variationHigher.htm
Marius van der Put. Symbolic analysis of differential equations.
This post: 2003-11-12, There are no other solutions... how to prove it?
The above post is excerpted from my sci.math post on Apr 27 2004 in the thread "number of indep. soloutions to diffyqs?" (sic)