This is easy when using the augmented-matrix form of the extended Euclidean algorithm.
$\begin{eqnarray}
(1)&& &&x^4\!+x+1 \,&=&\, \left<\,\color{#c00}1,\color{#0a0}0\,\right>\ \ \ {\rm i.e.}\,\ \ x^4\!+x+1 = \color{#c00}1\cdot (x^4\!+x+1) + \color{#0a0}0\cdot(x^3\!+x^2)\\
(2)&& && x^3\!+x^2 \,&=&\, \left<\,\color{#c00}0,\color{#0a0}1\,\right>\ \ \ {\rm i.e.}\,\quad\ \ \ x^3\!+x^2 = \color{#c00}0\cdot (x^4\!+x+1) + \color{#0a0}1\cdot(x^3\!+x^2)\\
(3)&=&(1)-x\cdot (2)\quad && x^3\!+x+1 \,&=&\, \left<\,1,\,x\,\right>\\
(4)&=&(2)-(3)\quad && x^2\!+x+1 \,&=&\, \left<\,1,\,x+1\,\right>\\
(5)&=&(2)-x\cdot(4)\quad &&\qquad\quad\ \ \ x \,&=&\, \left<x,\,x^2+x+1\right>\\
(6)&=&(4)-(x\!+\!1)\,(5)\!\!\!\! &&\qquad\quad\ \ \ 1 \,&=&\, \left<\color{#c00}{x^2+x+1},\ \color{#0a0}{x^3+x}\right>
\end{eqnarray}$
The Bezout Identity is $\ 1\, =\, (\color{#c00}{x^2\!+x+1})(x^4\!+x+1) + (\color{#0a0}{x^3\!+x})(x^3\!+x^2)$