$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\half}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
&\color{#0000ff}{\large%
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{\rm d}x\,{\rm d}y\,
\delta\pars{x^{2} + y^{2} - 4}
\delta\pars{\bracks{x - 1}^{2} + y^{2} -4}\fermi\pars{x,y}}
\\[3mm]&=
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{\rm d}x\,{\rm d}y\,
\delta\pars{x^{2} + y^{2} - 4}
\delta\pars{\bracks{x^{2} - 2x + 1} + y^{2} -4}\fermi\pars{x,y}
\\[3mm]&=
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{\rm d}x\,{\rm d}y\,
\delta\pars{x^{2} + y^{2} - 4}
\delta\pars{2x - 1}\fermi\pars{x,y}
\\[3mm]&=
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{\rm d}x\,{\rm d}y\,
\delta\pars{x^{2} + y^{2} - 4}\,
{\delta\pars{x - 1/2} \over 2}\,\fermi\pars{x,y}
\\[3mm]&=
\half\int_{-\infty}^{\infty}{\rm d}y\,
\delta\pars{\bracks{\half}^{2} + y^{2} - 4}\,\fermi\pars{\half,y}
\\[3mm]&=
\half\int_{-\infty}^{\infty}{\rm d}y\,\bracks{%
{\delta\pars{y + \root{15}/2} \over \root{15}}
+ {\delta\pars{y - \root{15}/2} \over \root{15}}}\fermi\pars{\half,y}
\\[3mm]&=\color{#0000ff}{\large%
{\root{15} \over 30}\bracks{\fermi\pars{\half,-\,{\root{15} \over 2}} + \fermi\pars{\half,{\root{15} \over 2}}}}
\end{align}