[This answer was merged from a question concerning $\rm\color{#0a0}{Bezout}$-based proofs]
Note $\ (\color{#c00}{a\!+\!b}) (ai^2\!+\!bj^2)= \color{#0a0}{(ai\!+\!bj)^2}\ \!\!+ \color{#c00}{ab}(i\!-\!j)^2\, $ by calculation (or by composition - see below)
thus $\ \ n^{\phantom{|^|}}\!\!\!\mid\color{#c00}{a\!+\!b,ab}\,\Rightarrow\, n\mid\color{#0a0}{(ai\!+\!bj)^2}\!=1^2\ $ by choosing $\,\color{#0a0}{ai\!+\!bj}=1\,$ by $\,(a,b)=1\,$ & Bezout.
Or: $\,\ \ (\color{#c00}{a\!+\!b}) (ai\!+\!bj)\,=\, \color{#0a0}{a^2i\!+\!b^2j}\,+\, \color{#c00}{ab}(i\!+\!j)\ $
thus $\,n^{\phantom{|^|}}\!\!\!\mid\color{#c00}{a\!+\!b,ab}\,\Rightarrow\, n\mid\color{#0a0}{a^2i\!+\!b^2j}\!=1\ $ by choosing $\,i,j\,$ to get Bezout for $\,(a^2,b^2)=1\,$
Remark $\ $ The genesis of the proof is ideal-theoretic, as is explained in this post, which presents a handful of proofs of the more general identity $\, (a\!+\!b,\,{\rm lcm}(a,b)) = (a,b).\,$ The above is essentially a Bezout form of the the last proof there (which is more general than a proof using primes, since it works in any gcd domain - where primes needn't exist). In fact OP is case $\, c=a\!+\!b,\,(a,b)\!=\! 1\,$ of
$$(a,b,c)=1\,\Rightarrow\, (a,c)(b,c) = (ab,c(a,b,c)) = (ab,c)\qquad$$
More classically, the first identity may be viewed conceptually as the special case $\,x=1=y\,$ in the biquadratic composition of quadratic forms in the Lemma below (used by Euler) whose proof by norm multiplicativity is an obvious generalization of the classical proof when $\,a=1=b.$
Lemma $\ \ (ax^2+by^2) (ai^2+bj^2)= (aix\!+\!bjy)^2\ \!\!+ ab(iy\!-\!jx)^2$
$\!\begin{array}{rll}{\bf Proof}\qquad\qquad\ \
(ax^2+by^2)&\!\!\!\!\!\!(ai^2+bj^2)&\!\! =\ N(\alpha)N(\beta)\\[.2em]
\!\!\!\!\!(x\sqrt a\!+\!y\sqrt{-b})(x\sqrt a\!-\!y\sqrt{-b})&\!\!\!\!\!\!(i\sqrt a\!-\!j\sqrt{-b})\ (i\sqrt a\!+\!j\sqrt{-b})&\!\!=\ \ \ \alpha\,\bar\alpha\,\beta\,\bar\beta\\[.2em]
(x\sqrt a\!+\!y\sqrt{-b})\ (i\sqrt a\!-\!j\sqrt{-b})&\!\!\!\!\!\!(x\sqrt a\!-\!y\sqrt{-b})(i\sqrt a\!+\!j\sqrt{-b})&\!\!=\ \ \ \alpha\,\beta\,\bar\alpha\,\bar\beta\\[.2em]
(aix\!+\!bjy\! +\! (iy\!-\!jx)\sqrt{-ab})&\!\!\!\!\!\!(aix\!+\!bjy\! -\! (iy\!-\!jx)\sqrt{-ab} )&\!\!= \ \ \ \alpha\beta\:\smash[t]{\overline{\alpha\beta}}\\[.2em]
(aix\!+\!bjy)^2\ &\!\!\!\!\!\!\!+ ab(iy\!-\!jx)^2 &\!\!= \ \ N(\alpha\beta)\end{array}$