Question
Suppose $V$ is a (finite-dimensional) vector space over $F$ ($\operatorname{char }F\neq2$, due to user1551) equipped with a non-degenerate quadratic form $Q$, and $T$ is a distance-preserving operator on $V$, viz. $Q(Tu-Tv)=Q(u-v)$ for each $u,v\in V$. Is it true that $T$ is linear affine (due to user1551)?
Background
I'm thinking about the mathematical derivation of Lorentz transformation from the principles of special relativity. In the context, $F=\mathbb R$, $V=F^4$ and $Q$ is the Lorentz quadratic form. The original problem might be with condition that $T$ acts on the space $\mathbb R^3$ as a translate (since they are inertial frames of reference), but $Q(Tu-Tv)=Q(u-v)$ only when $Q(u-v)=0$, which means that the operator preserves light cones.
On condition that $F=\mathbb R$ and $Q$ is positive definite the answer is true. It follows from a standard derivation: Suppose $\langle x,y\rangle=(Q(x+y)-Q(x)-Q(y))/2$, then by definition $\langle\circ,\circ\rangle$ is a positive definite bilinear form. Note that $\langle Tu,Tv\rangle=\frac12(Q(Tu)+Q(Tv)-Q(Tu-Tv))=\frac12(Q(u)+Q(v)-Q(u-v))=\langle u,v\rangle$, we have $Q(Tcv-cTv)=\langle Tcv-cTv,Tcv-cTv\rangle=0$ and $Q(T(u+v)-Tu-Tv)=\langle T(u+v)-Tu-Tv,T(u+v)-Tu-Tv\rangle=0$ follows, which implies that $T(u+v)=Tu+Tv$ and $Tcv=cTv$.
From the preceding argument, $T(u+v)-Tu-Tv$ and $Tcv-cTv$ are generally isotropic, but I don't know whether they must be zero.
Any idea? Thanks!