This post of Boris Bukh mentions amazing Gustav Herglotz's integral $$\int_0^1\frac{\ln\left(1+t^{\,4\,+\,\sqrt{\vphantom{\large A}\,15\,}\,}\right)}{1+t}\ \mathrm dt=-\frac{\pi^2}{12}\left(\sqrt{15}-2\right)+\ln2\cdot\ln\left(\sqrt3+\sqrt5\right)+\ln\frac{1+\sqrt5}{2}\cdot\ln\left(2+\sqrt3\right). $$ I wonder if there are other irrational real algebraic exponents $\alpha$ such that the integral $$ \int_{0}^{1} \frac{\ln\left(1 + t^{\,{\large\alpha}}\right)}{1 + t}\,{\rm d}t $$ has a closed-form representation? Is there a general formula giving results for such cases?
Are there such algebraic $\alpha$ of degree $> 2$ ?