This solution proves an even somewhat stronger statement. First, have
$$S_1 = (\sqrt[3]{n + 2} + \sqrt[3]{n})^3 = (n + 2) + 3(\sqrt[3]{n + 2})^2\sqrt[3]{n} + 3\sqrt[3]{n + 2}\,(\sqrt[3]{n})^2 + n \tag{1}\label{eq1A}$$
$$S_2 = (\sqrt[3]{n + 2} - \sqrt[3]{n})^3 = (n + 2) - 3(\sqrt[3]{n + 2})^2\sqrt[3]{n} + 3\sqrt[3]{n + 2}\,(\sqrt[3]{n})^2 - n \tag{2}\label{eq2A}$$
Adding these values gives
$$S_1 + S_2 = 2n + 4 + 6\sqrt[3]{n + 2}\,(\sqrt[3]{n})^2 \tag{3}\label{eq3A}$$
Letting $k_1 = \sqrt[3]{n + 2}\,(\sqrt[3]{n})^2$, then
$$\left(n + \frac{2}{3}\right)^3 - k_1^3 = \left(n^3 + 2n^2 + \frac{4n}{3} + \frac{8}{27}\right) - (n^3 + 2n^2) = \frac{4n}{3} + \frac{8}{27} \gt 0 \tag{4}\label{eq4A}$$
Thus, $k_1 \lt n + \frac{2}{3}$ so, from \eqref{eq3A}, we get
$$S_1 + S_2 \lt 2n + 4 + 6\left(n + \frac{2}{3}\right) = 8n + 8 \tag{5}\label{eq5A}$$
From \eqref{eq1A} and \eqref{eq2A}, we also have
$$S_1 - S_2 = 2n + 6(\sqrt[3]{n + 2})^2\sqrt[3]{n} \tag{6}\label{eq6A}$$
Using $k_2 = (\sqrt[3]{n + 2})^2\sqrt[3]{n}$, then
$$k_2^3 - \left(n + \frac{7}{6}\right)^3 = (n^3 + 4n^2 + 4n) - \left(n^3 + \frac{7n^2}{2} + \frac{49n}{12} + \frac{343}{216}\right) = \frac{n^2}{2} - \frac{n}{12} - \frac{343}{216} \tag{7}\label{eq7A}$$
Let $f(n) = \frac{n^2}{2} - \frac{n}{12} - \frac{343}{216}$. With $f(2) \approx 0.245$ and $f'(n) = n - \frac{1}{12} \gt 0$, then $f(n) \gt 0$ for all $n \ge 2$. Thus, $k_2 \gt n + \frac{7}{6}$ so, from \eqref{eq6A}, then
$$S_1 - S_2 \gt 2n + 6\left(n + \frac{7}{6}\right) = 8n + 7 \tag{8}\label{eq8A}$$
Since $S_2 \gt 0$, we get from \eqref{eq1A}, \eqref{eq5A} and \eqref{eq8A} that
$$8n + 7 \lt S_1 \lt 8n + 8 \;\;\;\to\;\;\; 8n + 7 \lt (\sqrt[3]{n} + \sqrt[3]{n + 2})^3 \lt 8n + 8 \tag{9}\label{eq9A}$$
Thus, $\lfloor(\sqrt[3]{n} + \sqrt[3]{n + 2})^3\rfloor + 1 \equiv 0 \pmod{8}$ for all integers $n \ge 2$.