$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Note that
$\ds{\pars{2k}!! = 2^{k}\,\Gamma\pars{k + 1}}$ and
$\ds{\pars{2k + 1}!! = 2^{k + 1}\,{\Gamma\pars{k + 3/2} \over \Gamma\pars{1/2}}}$.
\begin{align}
&\bbox[5px,#ffd]{\sum_{k = 0}^{\infty}{\pars{2k}!! \over
\pars{2k + 1}!!}\,x^{2k + 1}}
\\[5mm] = &\
{1 \over 2}\sum_{k = 0}^{\infty}{\Gamma\pars{k + 1}
\Gamma\pars{1/2} \over \Gamma\pars{k + 3/2}}\,x^{2k + 1}
\\[5mm] = &
{1 \over 2}\sum_{k = 0}^{\infty}\bracks{%
\int_{0}^{1}t^{k}\pars{1 - t}^{-1/2}\,\,\dd t}\,x^{2k + 1}
\\[5mm] = &\
{1 \over 2}\,x\int_{0}^{1}{1 \over \root{1 - t}}
\sum_{k = 0}^{\infty}\pars{x^{2}\,t}^{k}\,\dd t
\\[5mm] = &\
{1 \over 2}\,x\int_{0}^{1}{1 \over \root{1 - t}}
\sum_{k = 0}^{\infty}\pars{x^{2}\,t}^{k}\,\dd t
\\[5mm] = &\
{1 \over 2}\,x\int_{0}^{1}{\dd t \over
\root{1 - t}\pars{1 - x^{2}t}}
\\[5mm] \stackrel{t\ =\ 1 - \xi^{2}}{=}\,\,\,\,\,&
x\int_{0}^{1}{\dd\xi \over
1 - x^{2}\pars{1 - \xi^{2}}}
\\[5mm] = &\
x\,{1 \over 1 - x^{2}}\,{\root{1 - x^{2}} \over x}\int_{0}^{1}{\pars{x/\root{1 - x^{2}}}\dd\xi \over
\pars{x\xi/\root{1 - x^{2}}}^{2} + 1}
\\[5mm] = &
{1 \over \root{1 - x^{2}}}\arctan\pars{x \over \root{1 - x^2}}
\\[5mm] = &\
\left.{\arctan\pars{\tan\pars{\theta}} \over \root{1 - x^{2}}}
\,\right\vert_{\,x\ =\ \sin\pars{\theta}} =
\bbx{\arcsin\pars{x} \over \root{1 - x^{2}}} \\ &
\end{align}