Suppose $A B$ are all $n\times n$ matrix. Prove:$A B$ and $B A$ has the same characteristic polynomial.
- If A is invertible
\begin{align}P(A B)=|\lambda E-A B|=\left|\lambda A\cdot A^{-1}-A B\right|=\left|A\left(\lambda A^{-1}-B\right)\right|=\left|A\left\|\text{$\lambda $A}^{-1}-B\right.\right|\end{align}
\begin{align}P(B A)=|\lambda E-B A|=\left|\lambda A^{-1}\cdot A-B A\right|=\left|\left(\lambda A^{-1}-B\right)A\right|=\left|\left.\text{$\lambda $A}^{-1}-B\right\|A\right|\end{align}
Is it true?
- If A is not invertible
How to prove?
Edit:
I found a proof by Block Matrix Multiplication, it's more straightforward, is it right?
\begin{align}\left( \begin{array}{cc} E & 0 \\ -A & E \\ \end{array} \right).\left( \begin{array}{cc} \lambda E & B \\ \lambda A & \lambda E \\ \end{array} \right)=\left( \begin{array}{cc} \lambda E & B \\ 0 & \lambda E-A B \\ \end{array} \right)\end{align}
\begin{align}\left( \begin{array}{cc} \lambda E & B \\ \lambda A & \lambda E \\ \end{array} \right).\left( \begin{array}{cc} E & 0 \\ -A & E \\ \end{array} \right)=\left( \begin{array}{cc} \lambda E-B A & B \\ 0 & \lambda E \\ \end{array} \right)\end{align}
Another proof is by Sylvester determinant theorem which uses LU block decomposition.