Prove that each irreducible factor of $f(x)=x^{2^n}+x+1$ in $\mathbb Z_2[x]$ has degree $k$, where $k\mid 2n$.
Edit. I know I should somehow relate the question to an extension of $\mathbb Z_2$ of degree $2n$, say $GF(2^{2n})$. By this way I will be able to correspond each irreducible factor of $f(x)$ to a subfield of $GF(2^{2n})$ that obviously has degree $k$, where $k\mid 2n$.