Let $\displaystyle\;\;f(u) = \int_0^1 \log\Gamma(z+u) \,dz,\;\;$ we have:
$$f'(u) = \int_0^1 \frac{\Gamma'(z+u)}{\Gamma(z+u)}\,dz = \Big[\log\Gamma(z+u)\Big]_{z=0}^1
= \log\frac{\Gamma(u+1)}{\Gamma(u)} = \log u$$
Integrate this gives us $f(u) = f(0) + u\log u - u$. Now
$$f(0) = \int_0^1\log\Gamma(z)dz = \frac12\int_0^1\log(\Gamma(z)\Gamma(1-z)) \, dz
=\frac12 \int_0^1\log\frac{\pi}{\sin\pi z} \, dz\\
=\frac12\left(\log\pi - \frac{1}{\pi}\int_0^{\pi}\log \sin\theta \, d\theta\right)
\stackrel{\color{blue}{[1]}}{=} \frac12\log(2\pi)
$$
This gives us
$$f(u) = \frac12\log(2\pi) + u\log u - u$$
and hence
$$\begin{align}
I = \int_0^1 f(y^3) \, dy
= & \int_0^1 \big(\frac12\log(2\pi) + y^3 \log(y^3) - y^3\big) \, dy\\
= & \frac12\log(2\pi) + \left[\frac{3}{16}y^4(\log(y^4)-1) - \frac14 y^4\right]_0^1\\
= & \frac12\log(2\pi) - \frac{7}{16}
\end{align}$$
Notes
- $\color{blue}{[1]}$ We are using the result
$$\frac 1 \pi \int_0^\pi \log\sin\theta \, d\theta = -\log 2,$$
For a proof, see answers of this question.