I provide an alternative trigonometric formula for solving quadratic equations where $a$, $b$, and $c$ are non-zero real numbers.
Theorem 1. If $ax^2+bx+c=0$, then
$$x_{1,2}=\left(1\pm\frac{2}{\tan{\frac{\theta}{2}\mp1}}\right)\sqrt{\frac{c}{a}},$$
where $\theta=\sec^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.
Proof. Multiplying by $a$ the quadratic equation we have
$$(ax)^2+b(ax)+ac=0.$$
Let's make the substitution $\sec{\theta}=\frac{b}{2\sqrt{ac}}$, then
$$\begin{aligned}0&=(ax)^2+b(ax)+ac\\&=(ax)^2+2\sqrt{ac}(ax)\sec{\theta}+ac\\&=\sec{\theta}\left((ax)^2\cos{\theta}+2\sqrt{ac}(ax)+ac\cos{\theta}\right)\\&=\cos{\theta}((ax)^2+ac)+2\sqrt{ac}(ax)\\&= \cos{\theta}(ax+\sqrt{ac})^2-2\sqrt{ac}(ax)\cos{\theta}+2\sqrt{ac}(ax)\\&= \left(\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}\right)(ax+\sqrt{ac})^2-2\sqrt{ac}(ax)\left(1-2\sin^2{\frac{\theta}{2}}\right)+2\sqrt{ac}(ax)\\&= \cos^2{\frac{\theta}{2}}(ax+\sqrt{ac})^2 -\sin^2{\frac{\theta}{2}}(ax+\sqrt{ac})^2 +4\sqrt{ac}(ax)\sin^2{\frac{\theta}{2}}\\&= \cos^2{\frac{\theta}{2}}(ax+\sqrt{ac})^2 -\sin^2{\frac{\theta}{2}}\left((ax+\sqrt{ac})^2 -4\sqrt{ac}(ax)\right)\\&= \cos^2{\frac{\theta}{2}}(ax+\sqrt{ac})^2 -\sin^2{\frac{\theta}{2}}(ax-\sqrt{ac})^2\\&= \left(\cos{\frac{\theta}{2}}(ax+\sqrt{ac}) +\sin{\frac{\theta}{2}}(ax-\sqrt{ac})\right) \left(\cos{\frac{\theta}{2}}(ax+\sqrt{ac}) -\sin{\frac{\theta}{2}}(ax-\sqrt{ac})\right)\\&=\left(ax\left(\cos{\frac{\theta}{2}}+\sin{\frac{\theta}{2}}\right)+\sqrt{ac}\left(\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}\right) \right) \left(ax\left(\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}\right)+\sqrt{ac}\left(\cos{\frac{\theta}{2}}+\sin{\frac{\theta}{2}}\right) \right).\end{aligned}$$
Now, by setting the factors equal to zero and solving for x, we obtain,
$$\begin{aligned}x_1&=\left(\frac{\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}}\right)\sqrt{\frac{c}{a}}\\&= \left(1+\frac{2}{\tan{\frac{\theta}{2}-1}}\right)\sqrt{\frac{c}{a}}. \end{aligned}$$
Similarly we obtain,
$$\begin{aligned}x_2= \left(1-\frac{2}{\tan{\frac{\theta}{2}+1}}\right)\sqrt{\frac{c}{a}} \end{aligned}.$$
The formula appears to be new, at least on the internet. Wikipedia presents a trigonometric method, but it is different from mine. Stuart Simons offers a method that does seem to be related to my approach, but he only provides direct formulas for complex roots. I was able to independently derive Simons' formulas using $\cos{\theta}$ in the substitution instead of $\sec{\theta}$, and this was before coming across the Wikipedia article that references Simons' paper: Simons, Stuart, 'Alternative approach to complex roots of real quadratic equations,' Mathematical Gazette 93, March 2009, 91–92.
EDITED. And this formula can be obtained by substituting $\sin{\theta}$ instead of $\sec{\theta}$ and following similar steps as my previous proof: $x_{1,2}=\pm i e^{\pm i \theta}\sqrt{\frac{c}{a}}$.
Note. My interest in these formulas is purely mathematical. My primary intention is to incorporate all of these formulas mentioned here into a unified framework based on half-angle formulas. ALL the formulas mentioned here by me and others can be derived using half-angle identities, as exemplified by my initial proof, so in that sense, I feel satisfied.
The key observation I made is that $a^2+2abf(x)+b^2$ can be nicely factorized thanks to the properties of half-angle formulas, as long as $f(x)$ is a trigonometric function except $\tan{\theta}$ or $\cot{\theta}$. I wouldn't be surprised if analogous formulas could be obtained for cubic and quartic equations, but at the moment, I have no idea how to do it.
EDITED. Here I provide a proof for the formulas cited by njuffa in the comments.
Theorem 2.Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then
$$\begin{aligned}x_{1}&=-\tan{\frac{\theta}{2}}\sqrt{\frac{c}{a}},\\ x_{2}&=-\cot{\frac{\theta}{2}}\sqrt{\frac{c}{a}}, \end{aligned}$$
where $\theta=\csc^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.
Proof. Multiplying by $a$ the quadratic equation $ax^2+bx+c=0$, we have
$$(ax)^2+b(ax)+ac=0.$$
Let's make the substitution $\csc{\theta}=\frac{b}{2\sqrt{ac}}$, then
$$\begin{aligned}0&=(ax)^2+b(ax)+ac\\&=(ax)^2+2\sqrt{ac}(ax)\csc{\theta}+ac\\&=\csc{\theta}\left((ax)^2\sin{\theta}+2\sqrt{ac}(ax)+ac\sin{\theta}\right)\\&=2(ax)^2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}+2\sqrt{ac}(ax)\left(\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}\right)+2ac\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}\\&=(ax)^2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}+\sqrt{ac}(ax)\sin^2{\frac{\theta}{2}}+ \sqrt{ac}(ax)\cos^2{\frac{\theta}{2}}+ac\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}\\&= ax\sin{\frac{\theta}{2}}\left(ax\cos{\frac{\theta}{2}}+\sqrt{ac}\sin{\frac{\theta}{2}}\right)+\sqrt{ac}\cos{\frac{\theta}{2}}\left(ax\cos{\frac{\theta}{2}}+\sqrt{ac}\sin{\frac{\theta}{2}}\right)\\&= \left(ax\cos{\frac{\theta}{2}}+\sqrt{ac}\sin{\frac{\theta}{2}}\right)\left(ax\sin{\frac{\theta}{2}}+\sqrt{ac}\cos{\frac{\theta}{2}}\right)\end{aligned}$$ Finally, by setting the factors equal to zero, we obtain the desired formulas.
The following Euler-like identities have been suggested by formulas in this question.
If complex $\theta_1=\cos^{-1}{(p)}$ and $\theta_2=\sec^{-1}{(p)}$, where $p\geq-1$ and $p\neq0$, then the following relation holds:
$$e^{i\theta_1}=\frac{1-\tan{\frac{\theta_2}{2}} }{1+\tan{\frac{\theta_2}{2}}} \tag{1}$$
And when $p<-1$, we have
$$e^{-i\theta_1}=\frac{1-\tan{\frac{\theta_2}{2}}}{1+\tan{\frac{\theta_2}{2}}}\tag{2}$$
I came up with $(1,2)$ by equating the formulas for the positive roots of the original question's formula with Simons' formulas. Then, they need a slight modification because we cancel out $\sqrt{\frac{c}{a}}$. Another simpler formula can be obtained by equating the formulas for the roots of the german text and the formulas I got from substituting by $\sin{\theta}$ instead of $\sec{\theta}$:
If complex $\theta_1=\sin^{-1}{(p)}$ and $\theta_2=\csc^{-1}{(p)}$, where $p\leq1$ and $p\neq0$, then the following relation holds:
$$ie^{i\theta_1}=-\tan{\frac{\theta_2}{2}}\tag{3}$$
And for $p>1$ we have
$$ie^{-i\theta_1}=\tan{\frac{\theta_2}{2}}\tag{4}$$
There are several variants we can get this way. I find identities $(1-4)$ interesting because they allow for the simplification of certain trigonometric integrals, as well as solving integrals that not even Mathematica can handle. For example,
$$\int_{2}^{3} \frac{{1 - \tan\frac{{\sec^{-1}x}}{2}}}{{1 + \tan\frac{{\sec^{-1}x}}{2}}}\sqrt{\tan\frac{\csc^{-1}x}{2}}\,dx$$
Question: Is this formula known? Did Simons consider it in his article (I don't have access to it)?