Tedious work using algebra$$I=\int_0^1\frac{x(x^2-3x+1)}{(x^2-x+1)^3}\,\log(x(1-x))\, dx$$
Write
$$F=\frac{x(x^2-3x+1)}{(x^2-x+1)^3}=\frac{x(x-a)(x-b)}{(x-c)^3\,(x-d)^3}$$ where
$$a=\frac{3-\sqrt{5}}{2}\qquad b=\frac{3+\sqrt{5}}{2}\qquad c=\frac{1-i \sqrt{3}}{2}\qquad d=\frac{1+i \sqrt{3}}{2}$$
Partial fraction decomposition gives
$$F=\frac {A_c}{(x-c)}+\frac {B_c}{(x-c)^2}+\frac {C_c}{(x-c)^3}+\frac {A_d}{(x-d)}+\frac {B_d}{(x-d)^2}+\frac {C_d}{(x-d)^3}$$ with
$$A_c=-\frac{i}{3 \sqrt{3}}\qquad B_c=\frac{3+i \sqrt{3}}{18} \qquad C_c=\frac{3-i \sqrt{3}}{9} $$
$$A_d=+\frac{i}{3 \sqrt{3}}\qquad B_d=\frac{3-i \sqrt{3}}{18} \qquad C_d=\frac{3+i \sqrt{3}}{9} $$
All antiderivarives
$$J_n=\int \frac {\log(x(1-x)) } {(x-k)^n}\,dx$$ are "relatively" simple to compute.
For the definite integrals
$$\int \frac {\log(x(1-x)) } {(x-c)}\,dx=\text{Li}_2\left(\frac{1}{2}+\frac{i
\sqrt{3}}{2}\right)-\text{Li}_2\left(\frac{1}{2}-\frac{i
\sqrt{3}}{2}\right)$$
$$\int \frac {\log(x(1-x)) } {(x-c)^2}\,dx=\frac{\pi }{\sqrt{3}}$$
$$\int \frac {\log(x(1-x)) } {(x-c)^3}\,dx=-\frac{i}{6} \left(3 \sqrt{3}+\pi \right)$$
$$\int \frac {\log(x(1-x)) } {(x-d)}\,dx=$$
$$\frac{i}{12 \sqrt{3}} \left(-\psi ^{(1)}\left(\frac{1}{6}\right)-\psi
^{(1)}\left(\frac{1}{3}\right)+\psi
^{(1)}\left(\frac{2}{3}\right)+\psi
^{(1)}\left(\frac{5}{6}\right)\right)$$
$$\int \frac {\log(x(1-x)) } {(x-d)^2}\,dx=\frac{\pi }{\sqrt{3}}$$
$$\int \frac {\log(x(1-x)) } {(x-d)^3}\,dx=\frac{i}{6} \left(3 \sqrt{3}+\pi \right)$$
Replacing the $(A_c,B_c,C_c,A_d,B_d,C_d)$ constants by their values, ths leads to
$$I=\frac{2 \pi }{9 \sqrt{3}}-\frac{1}{3}+\frac 1 {54} \left(\psi ^{(1)}\left(\frac{1}{6}\right)+\psi
^{(1)}\left(\frac{1}{3}\right)-\psi
^{(1)}\left(\frac{2}{3}\right)-\psi
^{(1)}\left(\frac{5}{6}\right)\right)$$ already given by @David G. Stork