Rewrite $\arcsin u = \arctan \dfrac u{\sqrt{1-u^2}} = \arctan v$:
$$\begin{align*}
I &= \int_0^1 \frac{u \arcsin u}{u^4 + 2u^2 + 13} \, du \\
&= \int_0^1 \frac{u \arctan \frac u{\sqrt{1-u^2}}}{u^4 + 2u^2 + 13} \, du \\
&= \int_0^\infty \frac{\frac v{\sqrt{1+v^2}} \arctan v}{\frac{v^4}{\left(1+v^2\right)^2} + \frac{2v^2}{1+v^2} + 13} \, \frac{dv}{\left(1+v^2\right)^{3/2}} \\
&= \int_0^\infty \frac{v \arctan v}{16v^4 + 28v^2 + 13} \, dv \\
&= \frac12 \int_{-\infty}^\infty \frac{v \arctan v}{16v^4 + 28v^2 + 13} \, dv
\end{align*}$$
Now integrate the complex function,
$$f(z) = \frac{z \arctan z}{16z^4 + 28z^2 + 13} = -\frac i2 \frac{z}{16z^4 + 28z^2 + 13} \left(\log\left\lvert\frac{i-z}{i+z}\right\rvert + i \arg\left(\frac{i-z}{i+z}\right)\right)$$
along an indented semicircular contour $C$ (a modified reproduction of the contour provided in @Accelerator's answer here), avoiding a branch cut taken along $i[1,\infty)$ and enclosing the poles $\omega_1=\color{red}-\dfrac{\sqrt{-7\color{red}-i\sqrt3}}{2\sqrt2}$ and $\omega_2=\color{red}+\dfrac{\sqrt{-7\color{red}+i\sqrt3}}{2\sqrt2}$, indicated approximately by the green X marks. (I use the branch of $\sqrt z$ with $\arg z\in(-\pi,\pi)$.)
NB: Rewriting the integrand in terms of $\arctan$ isn't strictly necessary; just personal preference. With $\arcsin$, one can just as easily take a branch cut along $[-1,1]$ and integrate along a dogbone contour, as demonstrated here.

By the residue theorem, and taking a shortcut with Mathematica to simplify the RHS as much as possible,
$$\oint_C f(z) \, dz = i2\pi \sum_{\omega_1,\omega_2} \operatorname{Res} f(z) = \frac{\pi^2}{8\sqrt3} - \frac\pi{8\sqrt3} \arctan \left(\frac4{79} \sqrt{21+114\sqrt{13}}\right)$$
The integrals along the circular arcs $\Gamma$ and $\gamma$ will vanish as their respective radii get arbitrarily large/small. As the paths $\lambda_1,\lambda_2$ approach the cut from either side, we have
$$\begin{align*}
\int_{\lambda_1} f(z) \, dz &= \int_R^{1+\varepsilon} f(\varepsilon+iy) \cdot i\,dy \\
&\to -\frac i2 \int_1^\infty \frac{y}{16y^4 - 28y^2 + 13} \left(\log\left(\frac{y-1}{y+1}\right) + i \pi\right) \, dy \\[2ex]
\int_{\lambda_2} f(z) \, dz &= \int_{1+\varepsilon}^R f(-\varepsilon+iy) \cdot i\,dy \\
&\to \frac i2 \int_1^\infty \frac{y}{16y^4 - 28y^2 + 13} \left(\log\left(\frac{y-1}{y+1}\right) - i \pi\right) \, dy \\[2ex]
\implies \int_{\lambda_1\cup\lambda_2} f(z)\,dz &= \pi \int_1^\infty \frac{y}{16y^4 - 28y^2 + 13} \, dy \\
&= \pi \int_1^\infty \frac{y}{16 \left(y^2 - \frac78\right)^2 + \frac{3}{4}} \, dy = \frac{\pi^2}{12\sqrt3}
\end{align*}$$
It follows that
$$\int_{-\infty}^\infty f(v) \, dv = \frac{\pi^2}{24\sqrt3} - \frac\pi{8\sqrt3} \arctan \left(\frac4{79} \sqrt{21+114\sqrt{13}}\right) \\
\implies I = \boxed{\frac{\pi^2}{48\sqrt3} - \frac\pi{16\sqrt3} \arctan \left(\frac4{79} \sqrt{21+114\sqrt{13}}\right)}$$
use partial fraction expansion and try to bring the resulting integrals into a form where u can apply the defintion of dilogarithms. but it will become messy: http://www.wolframalpha.com/input/?i=integrate[arcsin%28x%29%2F%28a%2Bx%29%2Cx]
– tired Dec 06 '15 at 10:32