The following is a proof of the identity $$\small{}_4F_3\left(\left.\begin{array}{c}b,a,a,a\\a+1,a+1,a+1\end{array} \right\vert 1\right) = \frac{a^{3}}{2} B(a, 1-b) \left[\left(\psi(a) -\psi(a-b+1) \right)^{2}+ \psi^{(1)}(a)- \psi^{(1)}(a-b+1) \right],$$ for $\Re(a) >0$ and $ \Re(b) < 3. $
For $\Re(x) > 0$ and $\Re(y) > -2$, the second derivative of the beta function $B(x,y)$ with respect to $x$ has the integral representation $$\frac{\partial^{2} }{\partial x^{2}} \, B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} \ln^{2}(t)\, \mathrm dt.$$
Expanding $(1-t)^{y-1}$ in a Taylor series at $t=0$ and switching the order of summation and integration, as was done in the answer to this question, we get $$ \begin{align} \frac{\partial^{2} }{\partial x^{2}} \, B(x,y) &= \sum_{n=0}^{\infty} (-1)^{n}\binom{y-1}{n} \int_{0}^{1} t^{x+n-1} \ln^{2}(t) \, \mathrm dt \\ &= \sum_{n=0}^{\infty} (-1)^{n}\binom{y-1}{n} \frac{2}{(x+n)^{3}} \\ &= 2 \sum_{n=0}^{\infty} \frac{(1-y)_{n}}{(x+n)^{3}n!} . \end{align}$$
So for $\Re(b) <3$, we have$$ \begin{align} _4 F_3\left(b,a,a,a;a+1,a+1,a+1;1\right) &= \sum_{n=0}^{\infty} \frac{(b)_{n} \, \left((a)_{n}\right)^{3}}{\left((a+1)_{n}\right)^{3}} \frac{1}{n!} \\ &= a^{3}\sum_{n=0}^{\infty} \frac{(b)_{n}}{(a+n)^{3}\, n!} \\ &= \frac{a^{3}}{2} \frac{\partial^{2} }{\partial a^{2}} \, B(a,1-b). \end{align}$$
Differentiating the defintion $B(a,1-b)= \frac{\Gamma(a) \Gamma(1-b)}{\Gamma(a-b+1)}$ with respect to $a$, we get $$ \begin{align} \frac{\partial }{\partial a} B(a,1-b) &= \frac{\partial }{\partial a} \frac{\Gamma(a) \Gamma(1-b)}{\Gamma(a-b+1)} \\ &= \Gamma(1-b) \, \frac{\Gamma'(a)\Gamma(a-b+1)-\Gamma(a)\frac{\partial }{\partial a} \Gamma(a-b
+1)}{\Gamma^{2}(a-b+1)} \\ &= \frac{\Gamma(1-b)}{\Gamma(a-b+1)} \left(\Gamma'(a)-\Gamma(a) \, \psi(a-b+1) \right) \\ &= \frac{\Gamma(a)\Gamma(1-b)}{\Gamma(a-b+1)} \left(\psi(a)- \psi(a-b+1) \right) \\ &= B(a, 1-b)\left(\psi(a)- \psi(a-b+1) \right). \end{align}$$
And differentiating with respect to $a$ a second time, we get
$\begin{align} \frac{\partial^{2} }{\partial a^{2}} B(a, 1-b) &= \left(\psi(a)- \psi(a-b+1) \right) \frac{\partial }{\partial a}B(a, b-1) + B(a, 1-b) \frac{\partial }{\partial a}\left(\psi(a)- \psi(a-b+1) \right) \\ &= B(a, 1-b) \left(\psi(a)- \psi(a-b+1) \right)^{2}+ B(a,1-b) \left(\psi^{(1)}(a) - \psi^{(1)}(a-b+1) \right) \\ &= B(a,1-b) \left(\left(\psi(a)- \psi(a-b+1) \right)^{2} + \psi^{(1)}(a) - \psi^{(1)}(a-b+1) \right). \end{align}$
Therefore, $$\small {}_4F_3\left(\left.\begin{array}{c}b,a,a,a\\a+1,a+1,a+1\end{array} \right\vert 1\right) = \frac{a^{3}}{2} B(a, 1-b) \left[\left(\psi(a) -\psi(a-b+1) \right)^{2}+ \psi^{(1)}(a)- \psi^{(1)}(a-b+1) \right] $$ for $\Re(a) >0$ and $\Re(b) <3$.
Call the function on the right side of the above equation $f(a,b)$.
Since it's not particularly obvious, let's check that the limits $\lim_{b \to 1} f(a,b)$ and $\lim_{b \to 2} f(a,b)$ exist and are finite.
Expanding at $b=1$, we get $$\begin{align} \lim_{b \to 1} f(a,b) &= \small \frac{a^{3}}{2} \lim_{b \to 1} \left(-\frac{1}{b-1} + O(1) \right) \left((b-1)^{2}\psi^{(1)}(a)^{2} +O\left((b-1)^{3}\right)+(b-1)\psi^{2}(a) +O\left((b-1)^{2} \right)\right) \\ & = - \frac{a^{3}}{2} \, \psi^{(2)}(a). \end{align}$$
And if $a \ne 1$,
$ \begin{align} \lim_{b \to 2} f(a,b) = \frac{a^{3}}{2} (a-1) \lim_{b \to 2} & \left(\frac{1}{b-2} + O(1) \right) \Big(\frac{1}{(a-1)^{2}}+ \frac{2(b-2)}{a-1} \psi^{(1)}(a-1) + O\left((b-2)^{2} \right) \\ &- \frac{1}{(a-1)^{2}}+(b-2) \psi^{(2)}(a-1) + O\left((b-2)^{2} \right)\Big) \\ &= \frac{a^{3}}{2} \left( 2 \psi^{(1)}(a-1) +(a-1) \psi^{(2)}(a-1) \right) \\ &= \frac{a^{3}}{2} \left( 2 \left(\psi^{(1)}(a) + \frac{1}{(a-1)^{2}} \right) +(a-1) \left(\psi^{(2)}(a) - \frac{2}{(a-1)^{3}} \right) \right) \\ &=\frac{a^{3}}{2} \left( 2 \psi^{(1)}(a) +(a-1) \psi^{(2)}(a) \right). \end{align}$
A quick check confirms that $\sum_{n=0}^{\infty} \frac{(2)_{n}}{(1+n)^{3}n!} = \psi^{(1)}(1) = \zeta(2).$