TL; DR: Is this equation true, and how do I prove it? $$ \sum_{k=0}^n \binom{n}{k}(-1)^k(n-k)^n = n! \;\; \forall \;\; n \; \in N $$
Context:
I came across this question while thinking about powers of natural numbers. Imagine you have a list of numbers like this:
$$ 1^3 \;\; 2^3 \;\; 3^3 \;\; 4^3 \;\; 5^3 \;\; 6^3 \;\; ... $$ Then if you difference of each number with its neighbor, from right to left:
$$ \;\;\;\;\;\;\;\;1^3 \;\; 2^3 \;\; 3^3 \;\; 4^3 \;\; 5^3 \;\; 6^3 \;\; ...\\ \text \/ \;\;\text \/\;\;\text \/\;\;\text \/\;\;\text \/ \\ \;\;\;\;\;\;7 \;\; 19 \;\; 37 \;\; 61 \;\; 91 \;\; ...\\ \;\;\text \/ \;\;\text \/\;\;\text \/\;\;\text \/\;\; \\ \;\;\;\;\;\;12 \;\;18 \;\; 24 \;\; 30 \;\; ...\\ \;\;\;\text \/ \;\;\text \/\;\; \text \/ \;\; \\ \;\;\;\;\;\;\;6 \;\;\;\ 6 \;\;\;\; 6 \;\ ... $$ If we try another, say with the degree n=4: $$ \;\;\;\;\;\;\;\;1^4 \;\; 2^4 \;\; 3^4 \;\; 4^4 \;\; 5^4 \;\; 6^4 \;\; ...\\ \text \/ \;\;\text \/\;\;\text \/\;\;\text \/\;\;\text \/ \\ \;\;\;\;\;\;\;15 \;\; 65 \; 175 \; 369 \; 671 \;\; ...\\ \;\;\text \/ \;\;\text \/\;\;\text \/\;\;\text \/\;\; \\ \;\;\;\;\;\;\;\;50 \;110 \; 194 \; 302 \;\; ...\\ \;\;\;\text \/ \;\;\text \/\; \;\text \/ \;\; \\ \;\;\;\;\;\;\;\;60 \;\; 84 \;\; 108 \;\ ... \\ \;\;\;\text \/ \;\;\text \/ \\ \;\;\;\;\;\;\;\;\;\;24\;\;\;24 \;\;... $$ Or, with n=2: $$ \;\;\;\;\;\;\;\;1^2 \;\; 2^2 \;\; 3^2 \;\; 4^2 \;\; 5^2 \;\; 6^2 \;\; ...\\ \text \/ \;\;\text \/\;\;\text \/\;\;\text \/\;\;\text \/ \\ \;\;\;\;\;\;\;\;3 \;\;\;\; 5 \;\;\; 7 \;\;\;\; 9 \;\;\; 11 \;\;\;\; ...\\ \;\;\;\text \/ \;\;\text \/ \;\;\text \/ \;\;\text \/\;\; \\ \;\;\;\;\;\;\;2 \;\;\;\; 2 \;\;\;\; 2 \;\;\;\; 2 \;\; ...\\ $$
A clear pattern begins to emerge. For degree n, the "final" difference leads to n!. With n=2, the final row appears to be a infinite row of $2 = 2! = n!$ With n=4, final row is $24 = 4! = n!$
Finally, if I rewrite the diagram like this: $$ \;\;\;\;\;\;\;\;1^3 \;\;\;\;\;\;\;\;\;\; 2^3 \;\;\;\;\;\;\;\;\;\; 3^3 \;\;\;\;\;\;\;\;\;\; 4^3 \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\text \/ \;\;\;\;\;\;\;\;\;\;\text \/\;\;\;\;\;\;\;\;\;\;\text \/\;\;\;\;\;\;\;\;\;\; \\ \;\;\;\;\;\;\;\;\;\;\;2^3 - 1^3 \;\;\; 3^3 - 2^3 \;\;\; 4^3 - 3^3 \\ \;\;\;\;\;\;\;\;\text \/ \;\;\;\;\;\;\;\;\;\;\text \/ \\ \;\;\;\;\;\;\;\;3^3 - 2(2^3) + 1^3 \;\;\;\;\;\; 4^3 - 2(3^3) + 2^3 \\ \;\;\;\;\;\;\;\;\text \/ \\ \;\;\;\;\;\;\;4^3 -3(3^3) + 3(2^3) - 1^3 $$
If I rewrite each diagram in this format, I end up with the final difference as:
$ n = 2: 1(3^2) - 2(2^2) + 1(1^2) \\ n = 3: 1(4^3) - 3(3^3) + 3(2^3) - 1(1^3) \\ n = 4: 1(5^4) - 4(4^4) + 6(3^4) - 4(2^4) + 1(1^4)\\ ...\\ $
Notice how the coefficients form Pascal's Triangle. It makes sense that Pascal's Triangle should show up, since the construction of this diagram is strikingly similar to the construction of Pascal's Triangle, the only difference being, well, a difference rather than a sum of the neighbors.
Recall how earlier it was noticed that the final difference always seems to be n!.
The equation that I seek to prove and ask for help is: $$ \sum_{k=0}^n \binom{n}{k}(-1)^k(n-k)^n = n! \;\; \forall \;\; n \; \in N $$