The below is in a very similar vein to Qiaochu's answer, but differs in its precise technology. I have tried to be overly explicit; due to limits of space, I only treat below the matrices-not-assumed-invertible scenario. The case of invertible matrices can be handled very similarly.
As does Qiaochu, I will presuppose some basic properties of the determinant; the point is not to derive the determinant "from scratch", but merely to give it natural post hoc justification.
What follows is the main argument. The appendix, separately posted due to the character limit, can be found here.
Henceforth fix a positive natural $\text{d}$ (the $\text{d}=0$ case is trivial but sadly also degenerate); we will specifically consider determinants of $\text{d}\times\text{d}$ matrices.
In the interest of notational compactness, we abbreviate "$\in$" as "$\colon$" and identify the notation of a natural $\text{n}$ with the set $\left\{0,\dots,\text{n}-1\right\}$.
The actual argument:
In this section, denote by $\textbf{CRing}$ the category of commutative rings and by $\textbf{Set}$ the category of sets.
Proposition/Definition 0.: There are evident, well-defined functors
$\mathbb{1}\ \colon\ \textbf{CRing}\to\textbf{Set}$
$\text{EL}\ \colon\ \textbf{CRing}\to\textbf{Set}$
$\text{DIAG}_{\text{d}}\ \colon\ \textbf{CRing}\to\textbf{Set}$
$\text{MAT}_{\text{d},\text{d}}\ \colon\ \textbf{CRing}\to\textbf{Set}$
that map respectively by sending crings $R$
constantly to the singleton $\mathbb{1}\left(R\right)=\left\{*\right\}$ (and cring morphisms to its identity).
forgetfully to their underlying set $\text{EL}\left(R\right)$ of elements (and cring morphisms to their underlying functions).
to the set $\text{DIAG}_{\text{d}}\left(R\right)$ of diagonal $\text{d}\times\text{d}$ matrices with entries therein (and cring morphisms to the functions between these sets given by acting homomorphically on entries).
to the set $\text{MAT}_{\text{d},\text{d}}\left(R\right)$ of $\text{d}\times\text{d}$ matrices with entries therein (and cring morphisms to the functions between these sets given by acting homomorphically on entries).
There are moreover evident, well-defined natural transformations
$\text{Id}\ \colon\ \mathbb{1} \to \text{EL}$
$\text{Mul}_{\text{EL}}\ \colon\ \text{EL}\times \text{EL} \to \text{EL}$
$\text{Id}_{\text{DIAG}_{\text{d}}}\ \colon\ \mathbb{1}\to\text{DIAG}_{\text{d}}$
$\text{Mul}_{\text{DIAG}_{\text{d}}}\ \colon\ \text{DIAG}_{\text{d}}\times \text{DIAG}_{\text{d}} \to \text{DIAG}_{\text{d}}$
$\text{Id}_{\text{MAT}_{\text{d},\text{d}}}\ \colon\ \mathbb{1}\to\text{MAT}_{\text{d},\text{d}}$
$\text{Mul}_{\text{MAT}_{\text{d},\text{d}}}\ \colon\ \text{MAT}_{\text{d},\text{d}}\times \text{MAT}_{\text{d},\text{d}} \to \text{MAT}_{\text{d},\text{d}}$
$\text{Det}_{\text{d}}\ \colon\ \text{MAT}_{\text{d},\text{d}}\to\text{EL}$
$\text{Inc}'_{\text{d}}\ \colon\ \text{EL}\to\text{DIAG}_{\text{d}}$
$\text{Inc}''_{\text{d}}\ \colon\ \text{DIAG}_{\text{d}}\to\text{MAT}_{\text{d},\text{d}}$
that map respectively at (the component at) cring $R$
by sending the element $*\ \colon\ \mathbb{1}\left(R\right)$ of the singleton to the multiplicative identity $\text{Id}_{R}\left(*\right)\ \colon\ \text{EL}\left(R\right)$.
by sending the pair of elements $\left(r_{0},r_{1}\right)\ \colon\ \text{EL}\left(R\right)\times \text{El}\left(R\right)$ to its product $\text{Mul}_{\text{EL},R}\left(r_{0},r_{1}\right)=r_{0}r_{1}\ \colon\ \text{EL}\left(R\right)$.
by sending the element $*\ \colon\ \mathbb{1}\left(R\right)$ of the singleton to the (diagonal) $\text{d}\times\text{d}$ identity matrix $\text{Id}_{\text{DIAG}_{\text{d}},R}\left(*\right)\ \colon\ \text{DIAG}_{\text{d}}\left(R\right)$.
by sending the pair of diagonal $\text{d}\times\text{d}$ matrices $\left(A_{0},A_{1}\right)\ \colon\ \text{DIAG}_{\text{d}}\left(R\right)\times \text{DIAG}_{\text{d}}\left(R\right)$ to its product $\text{Mul}_{\text{DIAG}_{\text{d}}, R}\left(A_{0},A_{1}\right)=A_{1}A_{0}\ \colon\ \text{DIAG}_{\text{d}}\left(R\right)$.
by sending the element $*\ \colon\ \mathbb{1}\left(R\right)$ of the singleton to the $\text{d}\times\text{d}$ identity matrix $\text{Id}_{\text{MAT}_{\text{d},\text{d}},R}\left(*\right)\ \colon\ \text{MAT}_{\text{d},\text{d}}\left(R\right)$.
by sending the pair of $\text{d}\times\text{d}$ matrices $\left(A_{0},A_{1}\right)\ \colon\ \text{MAT}_{\text{d},\text{d}}\left(R\right)\times \text{MAT}_{\text{d},\text{d}}\left(R\right)$ to its product $\text{Mul}_{\text{MAT}_{\text{d},\text{d}}, R}\left(A_{0},A_{1}\right)=A_{1}A_{0}\ \colon\ \text{MAT}_{\text{d},\text{d}}\left(R\right)$.
by sending the matrix $A\ \colon\ \text{MAT}_{\text{d},\text{d}}\left(R\right)$ to its determinant $\text{Det}_{\text{d},R}\left(A\right)\ \colon\ \text{EL}\left(R\right)$
by sending the element $r\ \colon\ \text{EL}\left(R\right)$ to the diagonal matrix $\text{inc}'_{\text{d},R}\left(r\right)\ \colon\ \text{DIAG}_{\text{d}}\left(R\right)$ whose upper-left-most diagonal entry is $r$ and whose remaining diagonal entries are $1$.
by sending the $\text{d}\times\text{d}$ diagonal matrix $A\ \colon\ \text{DIAG}_{\text{d}}\left(R\right)$ to the same $\text{d}\times\text{d}$ matrix $\text{inc}''_{\text{d},R}\left(A\right)\ \colon\ \text{DIAG}_{\text{d}}\left(R\right)$.
Define also the natural transformation $\text{Inc}_{\text{d}} := \text{Inc}''_{\text{d}}\circ \text{Inc}'_{\text{d}}$ and remark that $\text{Det}_{\text{d}}\circ\text{Inc}_{\text{d}}=\text{id}_{\text{EL}}$.
"Justification" 0.: It's not hard—but certainly tedious—to check. $\Box$
Proposition 1.: We have internal monoids in the copresheaf category $\textbf{CRing}\to\textbf{Set}$ with respect to its Cartesian monoidal structure
$\underline{\text{EL}}:=\left(\text{EL},\text{Mul}_{\text{EL}},\text{Id}_{\text{EL}}\right)$.
$\underline{\text{DIAG}_{\text{d}}}:=\left(\text{DIAG}_{\text{d}},\text{Mul}_{\text{DIAG}_{\text{d}}},\text{Id}_{\text{DIAG}_{\text{d}}}\right)$.
$\underline{\text{MAT}_{\text{d},\text{d}}}:=\left(\text{MAT}_{\text{d},\text{d}},\text{Mul}_{\text{MAT}_{\text{d},\text{d}}},\text{Id}_{\text{MAT}_{\text{d},\text{d}}}\right)$.
The former two are commutative. The natural transformations $\text{Det}_{\text{d}}$, $\text{Inc}'_{\text{d}}$, and $\text{Inc}''_{\text{d}}$ (and thus $\text{Inc}_{\text{d}}$) are accordingly the underlying maps of internal monoid morphisms
$\underline{\text{Det}_{\text{d}}}\ \colon\ \underline{\text{MAT}_{\text{d},\text{d}}}\to\underline{\text{EL}}$.
$\underline{\text{Inc}'_{\text{d}}}\ \colon\ \underline{\text{EL}}\to\underline{\text{DIAG}_{\text{d}}}$.
$\underline{\text{Inc}''_{\text{d}}}\ \colon\ \underline{\text{DIAG}_{\text{d}}}\to\underline{\text{MAT}_{\text{d},\text{d}}}$.
(End Proposition 1.)
"Proof" 1.: Similarly direct. $\Box$
Proposition 2.: The copresheaves $\mathbb{1}$, $\text{EL}$, $\text{DIAG}_{\text{d}}$, and $\text{MAT}_{\text{d},\text{d}}$ are corepresented by the crings
$\mathbb{Z}$
$\mathbb{Z}\left[a\right]$
$\mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}$
$\mathbb{Z}\left[a_{\text{i}_{1},\ \text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}$
respectively, namely via the isomorphisms
$\left(f\ \colon\ \mathbb{Z}\to R\right)\ \mapsto\ \left(*\ \colon\ \mathbb{1}\left(R\right)\right)$
$\left(f\ \colon\ \mathbb{Z}\left[a\right]\to R\right)\ \mapsto\ \left(f\left(a\right)\ \colon\ \text{EL}\left(R\right)\right)$
$\left(f\ \colon\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}\to R\right)\ \mapsto\ \left(\left[\begin{cases}f\left(a_{\text{i}_{0}}\right)\text{ if }\text{i}_{1}=\text{i}_{0} \\ 0\text{ if }\text{i}_{1}\neq\text{i}_{0}\end{cases}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\ \colon\ \text{DIAG}_{\text{d},\text{d}}\left(R\right)\right)$
$\left(f\ \colon\ \mathbb{Z}\left[a_{\text{i}_{1},\ \text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\to R\right)\ \mapsto\ \left(\left[f\left(a_{\text{i}_{1},\ \text{i}_{0}}\right)\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\ \colon\ \text{MAT}_{\text{d},\text{d}}\left(R\right)\right)$
natural in cring $R$.
"Proof" 2.: Once more by inspection (if you're bored enough to do it). $\Box$
Proposition 3.: Given a commutative monoid $\Lambda$ internal to the coCartesian monoidal structure of $\textbf{CRing}$ and a pair of internal monoid morphisms $$\underline{\partial_{0}},\ \underline{\partial_{1}}\ \colon\ \underline{\text{MAT}_{\text{d},\text{d}}}\ \to\ \Lambda$$ with respective underlying natural transformations $\partial_{0}$ and $\partial_{1}$, we have that $$\partial_{0}\circ\text{Inc}_{\text{d}}\ =\ \partial_{1}\circ\text{Inc}_{\text{d}}\ \implies\ \partial_{0}\circ\text{Inc}''_{\text{d}}=\partial_{1}\circ\text{Inc}''_{\text{d}}\text{.}$$
(I.e., if $\underline{\partial_{0}}$ and $\partial_{1}$ agree after pulling back to $\underline{\text{EL}}$, then they already agreed upon pulling back to $\underline{\text{DIAG}_{\text{d}}}$.)
Proof 3: Let $$\mathfrak{D}_{\text{d}}\ :=\ \left[\begin{cases}a_{\text{i}_{0}}\text{ if }\text{i}_{1}=\text{i}_{0} \\ 0\text{ if }\text{i}_{1}\neq\text{i}_{0}\end{cases}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\ \colon\ \text{DIAG}_{\text{d}}\left(\mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}\right)$$ be the $\text{d}\times\text{d}$ diagonal matrix coclassified by the identity morphism of $\mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}$ via the isomorphisms in Proposition 2, and moreover let $$\left(\mathfrak{D}_{\text{d},\text{i}'}\ =\ \left[\begin{cases}a_{\text{i}_{0}}\text{ if }\text{i}_{1}=\text{i}_{0}=\text{i}' \\ 1\text{ if }\text{i}_{1}=\text{i}_{0}\neq\text{i}' \\ 0\text{ if }\text{i}_{1}\neq\text{i}_{0}\end{cases}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\ \colon\ \text{DIAG}_{\text{d}}\left(\mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}\right)\right)_{\text{i}'\ \colon\ \text{d}}$$ $$\left(\widetilde{\mathfrak{D}_{\text{d},\text{i}'}}\ =\ \text{Inc}'_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(a_{\text{i}'}\right)\ \colon\ \text{DIAG}_{\text{d}}\left(\mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}\right)\right)_{\text{i}'\ \colon\ \text{d}}\text{.}$$ Given $\partial_{0}$, $\partial_{1}$ as in the statement of the proposition, we have by the Yoneda lemma that $$\partial_{0}\circ\text{Inc}''_{\text{d}}\ =\ \partial_{1}\circ\text{Inc}''_{\text{d}}\ \iff\ \partial_{0,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}''_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\mathfrak{D}_{\text{d}}\right)\ =\ \partial_{1,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}''_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\mathfrak{D}_{\text{d}}\right)\text{.}$$
Indeed, remark that each $\mathfrak{D}_{\text{d},\text{i}'}$ is similar to the corresponding $\widetilde{\mathfrak{D}_{\text{d},\text{i}'}}$ (namely via the invertible $\text{d}\times\text{d}$ matrix that transposes the basis vectors indexed by $0$ and by $\text{i}'$) and thus by the commutativity of $\Lambda$ and the multiplicativity (and thus similarity-invariance) of the components of $\text{Inc}'_{\text{d}}$, $\text{Inc}''_{\text{d}}$, $\partial_{0}$, and $\partial_{1}$ that
\begin{align*}
\partial_{0,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}''_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\mathfrak{D}_{\text{d}}\right)\ &=\ \partial_{0,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}''_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\mathfrak{D}_{\text{d},\text{d}-1}\cdots\mathfrak{D}_{\text{d},0}\right)\\
&=\ \prod_{\text{i}'\ \colon\ \text{d}}\text{}^{\Lambda}\ \partial_{0,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}''_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\mathfrak{D}_{\text{d},\text{i}'}\right)\\
&=\ \prod_{\text{i}'\ \colon\ \text{d}}\text{}^{\Lambda}\ \partial_{0,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}''_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\widetilde{\mathfrak{D}_{\text{d},\text{i}'}}\right)\\
&=\ \prod_{\text{i}'\ \colon\ \text{d}}\text{}^{\Lambda}\ \partial_{0,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(a_{\text{i}'}\right)\\
&=\ \partial_{0,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\prod_{\text{i}'\ \colon\ \text{d}} a_{\text{i}'}\right)\\
&=\ \partial_{1,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\prod_{\text{i}'\ \colon\ \text{d}} a_{\text{i}'}\right)\\
&=\ \dots\left(\substack{\text{symmetric} \\ \text{manipulations}}\right)\\
&=\ \partial_{0,\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\circ\text{Inc}''_{\text{d},\ \mathbb{Z}\left[a_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}}\left(\mathfrak{D}_{\text{d}}\right)
\end{align*}
(with $\prod^{\Lambda}$ the commutative finitary multiplication of $\Lambda$), as claimed. $\Box$
Henceforth denote by $\left[-,-\right]$ the Hom (co)monoid functors defined/discussed in Fact B.1 below (we neglect to annotate the subscript, as context will make the typing evident).
Proposition 4.: $\underline{\text{Inc}_{\text{d}}}$ corepresents an isomorphism on the fully faithful subcategory of commutative monoids internal to the coCartesian monoidal structure of $\textbf{CRing}$.
I.e., given a commutative monoid $\Lambda$ internal to the coCartesian monoidal structure of $\textbf{CRing}$, the map $$\left[\underline{\text{Inc}_{\text{d}}},\ \text{id}_{\Lambda}\right]\ \colon\ \left[\underline{\text{MAT}_{\text{d},\text{d}}},\ \Lambda\right]\ \to\ \left[\underline{\text{EL}},\ \Lambda\right]$$ is an isomorphism of commutative ($\textbf{Set}$) monoids.
Proof 4: It suffices to verify the claim at the level of elements (i.e., of Hom sets). At the very least, the underlying map of $\left[\underline{\text{Inc}_{\text{d}}}, \text{id}_{\Lambda}\right]$ is surjective on elements, seeing as $$\left[\underline{\text{Inc}_{\text{d}}},\ \text{id}_{\Lambda}\right]\circ\left[\underline{\text{Det}_{\text{d}}},\ \text{id}_{\Lambda}\right]\ =\ \left[\text{id}_{\Lambda},\ \text{id}_{\underline{\text{EL}}}\right]\ =\ \text{id}_{\left[\underline{\text{EL}},\ \Lambda\right]}\text{.}$$
It remains to show injectivity, i.e. that given a pair of internal monoid morphisms $$\underline{\partial_{0}},\ \underline{\partial_{1}}\ \colon\ \underline{\text{MAT}_{\text{d},\text{d}}}\ \to\ \Lambda$$ with respective underlying natural transformations $\partial_{0}$ and $\partial_{1}$ that satisfy $\partial_{0}\circ\text{Inc}_{\text{d}} = \partial_{1}\circ\text{Inc}_{\text{d}}$, we have that $\partial_{0}=\partial_{1}$.
Henceforth fix $\partial_{0}$ and $\partial_{1}$ as above. It follows from Proposition 3 that $\partial_{0}\circ\text{Inc}''_{\text{d}} = \partial_{1}\circ\text{Inc}''_{\text{d}}$. The remainder of this proof will be dedicated to deducing the subclaim that $\partial_{0}=\partial_{1}$ given this last equality. (I.e., that if $\underline{\partial_{0}}$ and $\underline{\partial_{1}}$ agree after pulling back to $\underline{\text{DIAG}_{\text{d}}}$, then they already agreed on $\underline{\text{MAT}_{\text{d},\text{d}}}$.)
To that end, let $$\mathfrak{A}_{\text{d}}\ :=\ \left[a_{\text{i},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\ \colon\ \text{MAT}_{\text{d},\times{d}}\left(\mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\right)$$ be the $\text{d}\times\text{d}$ matrix coclassified by the identity of $\mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}$ via the isomorphisms in Proposition 2.
As in the proof of Proposition 3, it suffices by the Yoneda lemma to verify that $$\partial_{0,\ \mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}}\left(\mathfrak{A}_{\text{d}}\right)\ =\ \partial_{1,\ \mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}}\left(\mathfrak{A}_{\text{d}}\right)\text{.}$$ If $\mathfrak{A}_{\text{d}}$ were in the image of $\text{Inc}_{\text{d},\ \mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}}$ (i.e., if it were diagonal), then the subclaim would follow immediately from the Yoneda lemma. Of course, $\mathfrak{A}_{\text{d}}$ is not diagonal, nor even diagonalizable over $\mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}$. Nevertheless, it is diagonalizable in a monic extension of $\mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}$, and we will leverage this fact to deduce the result.
Given a cring $R$ and a $\text{d}\times\text{d}$ matrix $A$ over $R$, the coefficients of the (monomial, degree $\text{d}$) polynomial $\text{det}\left(x-A\right)$ in the indeterminate $x$, so also the discriminant of that polynomial, are expressible as polynomial functions with integer coefficients in the entries of $A$. In particular, there is for each $\text{i}\ \colon\ \text{d}$ a natural transformation $$\text{Coeff}_{\text{d},\text{i}}\ \colon\ \text{MAT}_{\text{d},\text{d}}\to\text{EL}$$ that at the component of $R$ sends the $\text{d}\times\text{d}$ matrix $A$ over $R$ to the coefficient of $x^{\text{i}}$ in $\text{det}\left(x-A\right)$, as well as a natural transformation $$\text{Disc}_{\text{d}}\ \colon\ \text{MAT}_{\text{d},\text{d}}\to\text{EL}$$ that at the component of $R$ sends the $\text{d}\times\text{d}$ matrix $A$ over $R$ to the discriminant of $\text{det}\left(\lambda-A\right)$. What's more, these $\left(\text{Coeff}_{\text{d},\text{i}}\right)_{\text{i}\ \colon\ \text{n}}$ and $\text{Disc}_{\text{d}}$ are by the Yoneda lemma classified by elements $\left(\mathfrak{c}_{\text{d},\text{i}}\right)_{\text{i}\ \colon\ \text{d}}$ and $\mathfrak{d}_{\text{d}}$ of $\mathbb{Z}\left[a_{i_{1},\ i_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}$; these classifying elements are, of course, none other than their respective evaluations on $\mathfrak{A}_{\text{d}}$.
Consider the evident composition of ring morphisms $$\mathbb{Z}\left[a_{\text{i}_{1},\ \text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\ \overset{\varepsilon_{\text{d}}}{\longrightarrow}\ \text{Frac}\left(\mathbb{Z}\left[a_{\text{i}_{1},\ \text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\right)\ \overset{\gamma_{\text{d}}}{\longrightarrow}\ \text{Frac}\left(\mathbb{Z}\left[a_{\text{i}_{1},\ \text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\right)\left[x_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}\ /\ \left(\mathfrak{c}_{\text{d},\text{i}}-\overbrace{\underbrace{\sum_{\text{i}_{0}\ \colon\ \text{d}}\cdots\sum_{\text{i}_{\text{d}-\text{i}-1}\ \colon\ \text{i}_{\text{d}-\text{i}-2}}}_{\text{d}-\text{i}\text{ sums}}\prod_{\text{j}\ \colon\ \text{d}-\text{i}} x_{\text{i}_{\text{j}}}}^{\text{d}-\text{i}^{\text{th}}\text{ elem' symm' poly' in }x\text{s}}\right)_{\text{i}\ \colon\ \text{d}}\text{.}$$ The last ring is readily seen to (essentially by construction) corepresent pairs of $\text{d}\times\text{d}$ matrices $A$ over $R$ equipped with an (ordered) factorization into monomials of $\text{det}\left(x-A\right)$. In particular, it is nontrivial (as there is at least one matrix over at least one nontrivial ring admitting such a datum), so we can choose a(n arbitrary but henceforth fixed) field $\mathfrak{K}_{\text{d}}$ and ring morphism $$\text{Frac}\left(\mathbb{Z}\left[a_{\text{i}_{1},\ \text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\right)\left[x_{\text{i}}\right]_{\text{i}\ \colon\ \text{d}}\ /\ \left(\mathfrak{c}_{\text{d},\text{i}}-\sum_{\text{i}_{0}\ \colon\ \text{d}}\cdots\sum_{\text{i}_{\text{d}-\text{i}-1}\ \colon\ \text{i}_{\text{d}-\text{i}-2}}\prod_{\text{j}\ \colon\ \text{d}-\text{i}} x_{\text{i}_{\text{j}}}\right)_{\text{i}\ \colon\ \text{d}}\ \overset{\kappa_{\text{d}}}{\longrightarrow}\ \mathfrak{K}_{\text{d}}\text{.}$$ By similar logic (specifically that there is at least one $\text{d}\times\text{d}$ matrix $A$ over at least one nonzero ring $R$ with the property that $\text{det}\left(x-A\right)$ has a nonzero discriminant), $\mathfrak{d}_{\text{d}}$ is nonzero and is thus inverted in $\text{Frac}\left(\mathbb{Z}\left[a_{\text{i}_{1},\ \text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}\right)$. So $\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}$ is an injective (being the composition of the canonical inclusion $\varepsilon_{\text{d}}$ of a domain into its fraction field with a morphism $\kappa_{\text{d}}\circ\gamma_{\text{d}}$ of fields) morphism from $\mathbb{Z}\left[a_{\text{i}_{1},\ \text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}$ into $\mathfrak{K}_{\text{d}}$ that inverts $\mathfrak{d}_{\text{d}}$.
I.e., the matrix $\text{MAT}_{\text{d},\text{d}}\left(\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}\right)\left(\mathfrak{A}_{\text{d}}\right)$ over $\mathfrak{K}_{\text{d}}$ coclassified by $\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}$ has the property that $\text{det}\left(x-\text{MAT}_{\text{d},\text{d}}\left(\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}\right)\left(\mathfrak{A}_{\text{d}}\right)\right)$ splits as a product of distinct linear monomials (having nonzero discriminant) over $\mathfrak{K}_{\text{d}}$. So by Fact A.2., $\text{MAT}_{\text{d},\text{d}}\left(\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}\right)\left(\mathfrak{A}_{\text{d}}\right)$ diagonalizes over $\mathfrak{K}$, being in particular similar to $$\text{Inc}''_{\text{d}}\left(\underbrace{\left[\begin{cases}x_{\text{i}_{0}}\text{ if }\text{i}_{0}=\text{i}_{1} \\ 0\text{ if }\text{i}_{0}\neq\text{i}_{1}\end{cases}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}}_{:=\ \mathfrak{X}_{\text{d}}\ \colon\ \text{DIAG}_{\text{d}}\left(\mathfrak{K}_{\text{d}}\right)}\right)\ \colon\ \text{MAT}_{\text{d},\text{d}}\left(\mathfrak{K}_{\text{d}}\right)\text{.}$$ It follows from the naturality and multiplicativity (whence componentwise similarity-invariance) of $\partial_{0}$ and $\partial_{1}$ that
\begin{align*}
\text{EL}\left(\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}\right)\circ\partial_{0,\ \mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}}\left(\mathfrak{A}_{\text{d}}\right)\ &=\ \partial_{0,\ \mathfrak{K}_{\text{d}}}\circ\text{MAT}_{\text{d},\text{d}}\left(\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}\right)\left(\mathfrak{A}_{\text{d}}\right)\\
&=\ \partial_{0,\ \mathfrak{K}_{\text{d}}}\circ \text{Inc}''_{\text{d},\ \mathfrak{K}_{\text{d}}}\left(\mathfrak{X}_{\text{d}}\right)\\
&=\ \partial_{0,\ \mathfrak{K}_{\text{d}}}\circ \text{Inc}''_{\text{d},\ \mathfrak{K}_{\text{d}}}\left(\mathfrak{X}_{\text{d}}\right)\text{,}\\
&=\ \dots\left(\substack{\text{symmetric} \\ \text{manipulations}}\right)\\
&=\ \text{EL}\left(\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}\right)\circ\partial_{1,\ \mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}}\left(\mathfrak{A}_{\text{d}}\right)
\end{align*}
and thus by the monicity of $\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}$ and hence of $\text{EL}\left(\kappa_{\text{d}}\circ \gamma_{\text{d}}\circ\varepsilon_{\text{d}}\right)$ that $$\partial_{0,\ \mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}}\left(\mathfrak{A}_{\text{d}}\right)\ =\ \partial_{1,\ \mathbb{Z}\left[a_{\text{i}_{1},\text{i}_{0}}\right]_{\text{i}_{0},\ \text{i}_{1}\ \colon\ \text{d}}}\left(\mathfrak{A}_{\text{d}}\right)\text{,}$$ precisely the subclaimed equality. $\Box$
Remark 5.: See here.
Result 6.: There is an isomorphism $$\left[\underline{\text{MAT}_{\text{d},\text{d}}},\ \underline{\text{EL}}\right]\ \overset{\simeq}{\longrightarrow}\ \left(\mathbb{N},+,0\right)$$ sending $\text{Det}_{\text{d}}$ to $1\ \colon\ \mathbb{N}$.
Proof 6.: By Proposition 2, Fact B.0, and Fact B.2, $\left[\underline{\text{EL}}, \underline{\text{EL}}\right]$ is isomorphic to $\left[\underline{\mathbb{Z}\left[a\right]}, \underline{\mathbb{Z}\left[a\right]}\right]$ with $\underline{\mathbb{Z}\left[a\right]}$ the commutative comonoid internal to the coCartesian monoidal category $\left(\textbf{Cring},\otimes,\mathbb{Z}\right)$ whose underlying object is $\mathbb{Z}\left[a\right]$, whose counit is the cring morphism $$\mathbb{Z}\left[a\right]\overset{a\ \mapsto\ 1}{\longrightarrow}\mathbb{Z}\text{,}$$ and whose binary comultiplication is the map $$\mathbb{Z}\left[a\right]\overset{a\ \mapsto\ bc}{\longrightarrow}\mathbb{Z}\left[b,c\right]\simeq \mathbb{Z}\left[a\right]\otimes \mathbb{Z}\left[a\right]\text{.}$$ By definition, $\left[\underline{\mathbb{Z}\left[a\right]},\ \underline{\mathbb{Z}\left[a\right]}\right]$ is (isomorphic to) the commutative monoid of univariate polynomials $f\ \colon\ \mathbb{Z}\left[a\right]$ satisfying $f\left(1\right)=1$ and $f\left(bc\right)=f\left(b\right)f\left(c\right)$ identically in the indeterminates $b$, $c$, with the monoid operation polynomial multiplication (and unit the constant polynomial at $1$). Thus we obtain by virtue of Fact C.0 an isomorphism of commutative monoids $$\left[\underline{\text{EL}},\ \underline{\text{EL}}\right]\ \overset{\simeq}{\longrightarrow}\ \left[\underline{\mathbb{Z}\left[a\right]},\ \underline{\mathbb{Z}\left[a\right]}\right]\ \overset{\simeq}{\longrightarrow}\ \left(\mathbb{N},+,0\right)$$ mapping the identity of $\underline{\text{EL}}$ to $1\ \colon\ \mathbb{N}$.
Proposition 4. gives us in turn an isomorphism of commutative monoids $$\left[\underline{\text{Inc}_{\text{d}}},\ \underline{\text{id}_{\text{EL}}}\right]\ \colon\ \left[\underline{\text{MAT}_{\text{d},\text{d}}},\ \underline{\text{EL}}\right]\ \overset{\simeq}{\longrightarrow}\ \left[\underline{\text{EL}},\ \underline{\text{EL}}\right]$$ mapping $\underline{\text{Det}_{\text{d}}}$ to $\underline{\text{Det}_{\text{d}}}\circ \underline{\text{Inc}_{\text{d}}} = \text{id}_{\underline{\text{EL}}}$.
Forming the composite $$\left[\underline{\text{MAT}_{\text{d},\text{d}}},\ \underline{\text{EL}}\right]\ \overset{\simeq}{\longrightarrow}\ \left[\underline{\text{EL}},\ \underline{\text{EL}}\right]\ \overset{\simeq}{\longrightarrow}\ \left[\underline{\mathbb{Z}\left[a\right]},\ \underline{\mathbb{Z}\left[a\right]}\right]\ \overset{\simeq}{\longrightarrow}\ \left(\mathbb{N},+,0\right)$$ of the above maps gives the claimed commutative $\textbf{Set}$ monoid isomorphisms. $\blacksquare$
Upshot 7.: $\text{Det}_{\text{d}}$ is the unique generator of the ($\textbf{Set}$) commutative monoid of internal monoid morphisms $\underline{\text{MAT}_{\text{d},\text{d}}}\to\underline{\text{EL}}$, and in particular can be retroactively canonically defined as such.
A. Some relevant facts from (very elementary) linear algebra, which I painstakingly detail so as to make clear exactly which properties of $\text{det}$ we're presupposing:
See here.
B. Some relevant facts from category theory:
See here.
C. A relevant polynomial functional equation:
See here.