Define the function $S:\{(x,y,z)\in\mathbb{R}^{3}\mid0\le y\le x\land x-y\le z\le x+y\}\rightarrow\mathbb{R}$ bye the expression
$$S{\left(x,y,z\right)}:=\frac14\sqrt{(x+y+z)(-x+y+z)(x-y+z)(x+y-z)},$$
and let $\mathcal{U}$ denote the value of the triple integral
$$\mathcal{U}=\int_{0}^{1}\mathrm{d}x\int_{0}^{x}\mathrm{d}y\int_{x-y}^{x+y}\mathrm{d}z\,\sqrt{S{\left(x,y,z\right)}}\approx0.117599.$$
Observe that $S$ has the following scaling property:
$$\begin{align}
S{\left(x,xt,xu\right)}
&=\frac14\sqrt{(x+xt+xu)(-x+xt+xu)(x-xt+xu)(x+xt-xu)}\\
&=\frac14\sqrt{x^{4}(1+t+u)(-1+t+u)(1-t+u)(1+t-u)}\\
&=x^{2}\cdot\frac14\sqrt{(1+t+u)(-1+t+u)(1-t+u)(1+t-u)}\\
&=x^{2}S{\left(1,t,u\right)}.\\
\end{align}$$
We can use this property to trivialize one of the integrations of $\mathcal{U}$ and reduce it to a double integral:
$$\begin{align}
\mathcal{U}
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{x}\mathrm{d}y\int_{x-y}^{x+y}\mathrm{d}z\,\sqrt{S{\left(x,y,z\right)}}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}t\,x\int_{1-t}^{1+t}\mathrm{d}u\,x\sqrt{S{\left(x,xt,xu\right)}};~~~\small{\left[y=xt, z=xu\right]}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}t\int_{1-t}^{1+t}\mathrm{d}u\,x^{2}\sqrt{x^{2}S{\left(1,t,u\right)}}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}t\int_{1-t}^{1+t}\mathrm{d}u\,x^{3}\sqrt{S{\left(1,t,u\right)}}\\
&=\int_{0}^{1}\mathrm{d}t\int_{1-t}^{1+t}\mathrm{d}u\int_{0}^{1}\mathrm{d}x\,x^{3}\sqrt{S{\left(1,t,u\right)}}\\
&=\int_{0}^{1}\mathrm{d}t\int_{1-t}^{1+t}\mathrm{d}u\,\frac14\sqrt{S{\left(1,t,u\right)}}.\\
\end{align}$$
With a couple more simple substitutions, we can rewrite this double integral in a slightly less cumbersome form:
$$\begin{align}
\mathcal{U}
&=\frac14\int_{0}^{1}\mathrm{d}t\int_{1-t}^{1+t}\mathrm{d}u\,\sqrt{S{\left(1,t,u\right)}}\\
&=\frac14\int_{0}^{1}\mathrm{d}t\int_{1-t}^{1+t}\mathrm{d}u\,\sqrt{\frac14\sqrt{(1+t+u)(-1+t+u)(1-t+u)(1+t-u)}}\\
&=\frac18\int_{0}^{1}\mathrm{d}t\int_{1-t}^{1+t}\mathrm{d}u\,\sqrt[4]{(1+t+u)(-1+t+u)(1-t+u)(1+t-u)}\\
&=\frac18\int_{0}^{1}\mathrm{d}t\int_{1-t}^{1+t}\mathrm{d}u\,\sqrt[4]{\left[(1+t)^{2}-u^{2}\right]\left[u^{2}-(1-t)^{2}\right]}\\
&=\frac18\int_{0}^{1}\mathrm{d}t\int_{\frac{1-t}{1+t}}^{1}\mathrm{d}x\,(1+t)\sqrt[4]{\left[(1+t)^{2}-(1+t)^{2}x^{2}\right]\left[(1+t)^{2}x^{2}-(1-t)^{2}\right]};~~~\small{\left[u=(1+t)x\right]}\\
&=\frac18\int_{0}^{1}\mathrm{d}t\int_{\frac{1-t}{1+t}}^{1}\mathrm{d}x\,(1+t)^{2}\sqrt[4]{\left(1-x^{2}\right)\left[x^{2}-\left(\frac{1-t}{1+t}\right)^{2}\right]}\\
&=\frac18\int_{0}^{1}\mathrm{d}y\,\frac{2}{(1+y)^{2}}\int_{y}^{1}\mathrm{d}x\,\frac{4}{(1+y)^{2}}\sqrt[4]{\left(1-x^{2}\right)\left(x^{2}-y^{2}\right)};~~~\small{\left[t=\frac{1-y}{1+y}\right]}\\
&=\int_{0}^{1}\mathrm{d}y\int_{y}^{1}\mathrm{d}x\,\frac{\sqrt[4]{\left(1-x^{2}\right)\left(x^{2}-y^{2}\right)}}{\left(1+y\right)^{4}}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{x}\mathrm{d}y\,\frac{\sqrt[4]{\left(1-x^{2}\right)\left(x^{2}-y^{2}\right)}}{\left(1+y\right)^{4}}.\\
\end{align}$$
By the general binomial theorem, a binomial with negative integer exponent has the following power series expansion:
$$\left(1-z\right)^{-p}=\sum_{n=0}^{\infty}\binom{p+n-1}{n}z^{n};~~~\small{p\in\mathbb{N}\land|z|<1}.$$
Using the lemma above to expand the $(1+y)^{-4}$ factor of the integrand of $\mathcal{U}$ as a binomial series, we then use technique of switching the order of summation and integration to find
$$\begin{align}
\mathcal{U}
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{x}\mathrm{d}y\,\left(1+y\right)^{-4}\sqrt[4]{\left(1-x^{2}\right)\left(x^{2}-y^{2}\right)}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{x}\mathrm{d}y\,\sum_{n=0}^{\infty}\binom{n+3}{n}(-y)^{n}\sqrt[4]{\left(1-x^{2}\right)\left(x^{2}-y^{2}\right)}\\
&=\sum_{n=0}^{\infty}(-1)^{n}\binom{n+3}{n}\int_{0}^{1}\mathrm{d}x\int_{0}^{x}\mathrm{d}y\,y^{n}\sqrt[4]{\left(1-x^{2}\right)\left(x^{2}-y^{2}\right)}\\
&=\sum_{n=0}^{\infty}(-1)^{n}\binom{n+3}{n}\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}v\,x^{n+1}v^{n}\sqrt[4]{\left(1-x^{2}\right)x^{2}\left(1-v^{2}\right)};~~~\small{\left[y=xv\right]}\\
&=\sum_{n=0}^{\infty}(-1)^{n}\binom{n+3}{n}\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}u\,2^{-2}t^{n/2}u^{(n-1)/2}\sqrt[4]{t\left(1-t\right)\left(1-u\right)};~~~\small{\left[x^{2}=t,\,v^{2}=u\right]}\\
&=\frac14\sum_{n=0}^{\infty}(-1)^{n}\binom{n+3}{n}\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}u\,t^{n/2+1/4}\left(1-t\right)^{1/4}u^{(n-1)/2}\left(1-u\right)^{1/4}\\
&=\frac14\sum_{n=0}^{\infty}(-1)^{n}\binom{n+3}{n}\int_{0}^{1}\mathrm{d}t\,t^{n/2+1/4}\left(1-t\right)^{1/4}\int_{0}^{1}\mathrm{d}u\,u^{(n-1)/2}\left(1-u\right)^{1/4}\\
&=\frac14\sum_{n=0}^{\infty}(-1)^{n}\binom{n+3}{n}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac54\right)}\operatorname{B}{\left(\frac{n+1}{2},\frac54\right)}\\
&=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{4}\cdot\frac{(n+3)!}{n!\,3!}\cdot\frac{\Gamma{\left(\frac{n}{2}+\frac54\right)}\,\Gamma{\left(\frac54\right)}}{\Gamma{\left(\frac{n}{2}+\frac52\right)}}\cdot\frac{\Gamma{\left(\frac{n+1}{2}\right)}\,\Gamma{\left(\frac54\right)}}{\Gamma{\left(\frac{n}{2}+\frac74\right)}}\\
&=\frac16\left[\Gamma{\left(\frac54\right)}\right]^{2}\sum_{n=0}^{\infty}(n+2)\,(-1)^{n}\,\frac{\Gamma{\left(\frac{n}{2}+\frac54\right)}}{\Gamma{\left(\frac{n}{2}+\frac74\right)}}\\
&=\frac{\left[\Gamma{\left(\frac54\right)}\right]^{2}}{8\,\Gamma{\left(\frac52\right)}}\sum_{n=0}^{\infty}(n+2)\,(-1)^{n}\,\frac{\Gamma{\left(\frac{n}{2}+\frac54\right)}\,\Gamma{\left(\frac12\right)}}{\Gamma{\left(\frac{n}{2}+\frac74\right)}}\\
&=\frac18\operatorname{B}{\left(\frac54,\frac54\right)}\sum_{n=0}^{\infty}(n+2)\,(-1)^{n}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac12\right)},\\
\end{align}$$
where the beta function and the gamma function are defined in the usual way by their respective integral representations,
$$\operatorname{B}{\left(x,y\right)}=\int_{0}^{1}\mathrm{d}t\,t^{x-1}\left(1-t\right)^{y-1};~~~\small{x>0\land y>0},$$
$$\Gamma{\left(z\right)}:=\int_{0}^{\infty}\mathrm{d}t\,t^{z-1}\exp{\left(-t\right)};~~~\small{z>0},$$
and are related through the identity
$$\operatorname{B}{\left(x,y\right)}=\frac{\Gamma{\left(x\right)}\,\Gamma{\left(y\right)}}{\Gamma{\left(x+y\right)}};~~~\small{x>0\land y>0}.$$
Define $f$ on $(-1,1)$ by the power series
$$f{\left(z\right)}=\sum_{n=0}^{\infty}z^{n}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac12\right)};~~~\small{|z|<1}.$$
Differentiating term-by-term, we have
$$f^{\prime}{\left(z\right)}=\sum_{n=0}^{\infty}nz^{n-1}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac12\right)},$$
and it follows that
$$2f{\left(z\right)}+zf^{\prime}{\left(z\right)}=\sum_{n=0}^{\infty}\left(n+2\right)z^{n}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac12\right)}.$$
We can convert the series representation for $f$ into an integral by expressing the beta function through its integral representation and summing under the integral sign:
$$\begin{align}
f{\left(z\right)}
&=\sum_{n=0}^{\infty}z^{n}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac12\right)}\\
&=\sum_{n=0}^{\infty}z^{n}\int_{0}^{1}\mathrm{d}t\,t^{n/2+1/4}\left(1-t\right)^{-1/2}\\
&=\sum_{n=0}^{\infty}z^{n}\int_{0}^{1}\mathrm{d}t\,\frac{t^{n/2+1/4}}{\sqrt{1-t}}\\
&=\sum_{n=0}^{\infty}z^{n}\int_{0}^{1}\mathrm{d}u\,\frac{2u^{n+1}\sqrt{u}}{\sqrt{1-u^{2}}};~~~\small{\left[t=u^{2}\right]}\\
&=\int_{0}^{1}\mathrm{d}u\,\sum_{n=0}^{\infty}\frac{2z^{n}u^{n+1}\sqrt{u}}{\sqrt{1-u^{2}}}\\
&=\int_{0}^{1}\mathrm{d}u\,\frac{2u\sqrt{u}}{\left(1-zu\right)\sqrt{1-u^{2}}}.\\
\end{align}$$
Then,
$$\begin{align}
f^{\prime}{\left(z\right)}
&=\frac{d}{dz}\int_{0}^{1}\mathrm{d}u\,\frac{2u\sqrt{u}}{\left(1-zu\right)\sqrt{1-u^{2}}}\\
&=\int_{0}^{1}\mathrm{d}u\,\frac{\partial}{\partial z}\frac{2u\sqrt{u}}{\left(1-zu\right)\sqrt{1-u^{2}}}\\
&=\int_{0}^{1}\mathrm{d}u\,\frac{2u^{2}\sqrt{u}}{\left(1-zu\right)^{2}\sqrt{1-u^{2}}},\\
\end{align}$$
and so
$$\begin{align}
\sum_{n=0}^{\infty}\left(n+2\right)z^{n}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac12\right)}
&=2f{\left(z\right)}+zf^{\prime}{\left(z\right)}\\
&=2\int_{0}^{1}\mathrm{d}u\,\frac{2u\sqrt{u}}{\left(1-zu\right)\sqrt{1-u^{2}}}+z\int_{0}^{1}\mathrm{d}u\,\frac{2u^{2}\sqrt{u}}{\left(1-zu\right)^{2}\sqrt{1-u^{2}}}\\
&=\int_{0}^{1}\mathrm{d}u\,\frac{2\left(2-zu\right)u\sqrt{u}}{\left(1-zu\right)^{2}\sqrt{1-u^{2}}}.\\
\end{align}$$
In the limit as $z\to-1^{+}$, this becomes
$$\sum_{n=0}^{\infty}\left(n+2\right)(-1)^{n}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac12\right)}=2\int_{0}^{1}\mathrm{d}u\,\frac{\left(2+u\right)u\sqrt{u}}{\left(1+u\right)^{2}\sqrt{1-u^{2}}}.$$
For any nonnegative integer $n$, observe how the following class of integrals transform:
$$\begin{align}
\int_{0}^{1}\mathrm{d}x\,\frac{1}{\left(1+x\right)^{n}\sqrt{x\left(1-x^{2}\right)}}
&=\int_{0}^{1}\mathrm{d}x\,\frac{1}{\left(1+x\right)^{n}\sqrt{x\left(1-x\right)\left(1+x\right)}}\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{1}{\left(1+x\right)^{n+1}\sqrt{x\left(\frac{1-x}{1+x}\right)}}\\
&=\int_{0}^{1}\mathrm{d}y\,\frac{2}{\left(1+y\right)^{2}}\cdot\frac{1}{\left(\frac{2}{1+y}\right)^{n+1}\sqrt{y\left(\frac{1-y}{1+y}\right)}};~~~\small{\left[x=\frac{1-y}{1+y}\right]}\\
&=\int_{0}^{1}\mathrm{d}y\,\frac{\left(1+y\right)^{n}}{2^{n}\sqrt{y\left(1-y^{2}\right)}}.\\
\end{align}$$
Also for any nonnegative integer $n$, we find
$$\begin{align}
\int_{0}^{1}\mathrm{d}x\,\frac{x^{n}}{\sqrt{x\left(1-x^{2}\right)}}
&=\int_{0}^{1}\mathrm{d}x\,\frac{x^{n-1/2}}{\sqrt{1-x^{2}}}\\
&=\int_{0}^{1}\mathrm{d}t\,\frac{t^{n/2-1/4}}{2\sqrt{t}\sqrt{1-t}};~~~\small{\left[x=\sqrt{t}\right]}\\
&=\frac12\int_{0}^{1}\mathrm{d}t\,t^{n/2-3/4}\left(1-t\right)^{-1/2}\\
&=\frac12\operatorname{B}{\left(\frac{n}{2}+\frac14,\frac12\right)}.\\
\end{align}$$
We then obtain the following result:
$$\begin{align}
\int_{0}^{1}\mathrm{d}x\,\frac{\left(2+x\right)x\sqrt{x}}{\left(1+x\right)^{2}\sqrt{1-x^{2}}}
&=\int_{0}^{1}\mathrm{d}x\,\frac{\left(2+x\right)x^{2}}{\left(1+x\right)^{2}\sqrt{x\left(1-x^{2}\right)}}\\
&=\int_{0}^{1}\mathrm{d}x\,\left[x-\frac{1}{1+x}+\frac{1}{\left(1+x\right)^{2}}\right]\frac{1}{\sqrt{x\left(1-x^{2}\right)}}\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{x}{\sqrt{x\left(1-x^{2}\right)}}-\int_{0}^{1}\mathrm{d}x\,\frac{1}{\left(1+x\right)\sqrt{x\left(1-x^{2}\right)}}\\
&~~~~~+\int_{0}^{1}\mathrm{d}x\,\frac{1}{\left(1+x\right)^{2}\sqrt{x\left(1-x^{2}\right)}}\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{x}{\sqrt{x\left(1-x^{2}\right)}}-\int_{0}^{1}\mathrm{d}y\,\frac{\left(1+y\right)}{2\sqrt{y\left(1-y^{2}\right)}}\\
&~~~~~+\int_{0}^{1}\mathrm{d}y\,\frac{\left(1+y\right)^{2}}{2^{2}\sqrt{y\left(1-y^{2}\right)}};~~~\small{\left[x=\frac{1-y}{1+y}\right]}\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{x}{\sqrt{x\left(1-x^{2}\right)}}-\frac14\int_{0}^{1}\mathrm{d}y\,\frac{1}{\sqrt{y\left(1-y^{2}\right)}}\\
&~~~~~+\frac14\int_{0}^{1}\mathrm{d}y\,\frac{y^{2}}{\sqrt{y\left(1-y^{2}\right)}}\\
&=\frac12\operatorname{B}{\left(\frac34,\frac12\right)}-\frac18\operatorname{B}{\left(\frac14,\frac12\right)}+\frac18\operatorname{B}{\left(\frac54,\frac12\right)}.\\
\end{align}$$
Returning finally to the evaluation of $\mathcal{U}$, we have
$$\begin{align}
\mathcal{U}
&=\frac18\operatorname{B}{\left(\frac54,\frac54\right)}\sum_{n=0}^{\infty}\left(n+2\right)(-1)^{n}\operatorname{B}{\left(\frac{n}{2}+\frac54,\frac12\right)}\\
&=\frac14\operatorname{B}{\left(\frac54,\frac54\right)}\int_{0}^{1}\mathrm{d}x\,\frac{\left(2+x\right)x\sqrt{x}}{\left(1+x\right)^{2}\sqrt{1-x^{2}}}\\
&=\frac14\operatorname{B}{\left(\frac54,\frac54\right)}\left[\frac12\operatorname{B}{\left(\frac34,\frac12\right)}-\frac18\operatorname{B}{\left(\frac14,\frac12\right)}+\frac18\operatorname{B}{\left(\frac54,\frac12\right)}\right]\\
&=\frac{\pi}{12\sqrt{2}}-\frac{\left[\Gamma{\left(\frac14\right)}\right]^{4}}{576\sqrt{2}\,\pi}.\blacksquare\\
\end{align}$$
Now, it would be interesting if your conjectured value is also correct, in which case my result provides an exact value for that combination of elliptic integrals in terms of gamma functions. Perhaps that can be explored later. Cheers!
N[Pi/(12*Sqrt[2]) + Gamma[1/4]^4*Sqrt[10]/( 1440 *Pi^2)*((1/2 - 1/Sqrt[5*GoldenRatio])* EllipticK[1/(GoldenRatio Sqrt[2]) + 1/Sqrt[2 GoldenRatio]]^2 - EllipticK[1/(GoldenRatio Sqrt[2]) + 1/Sqrt[2 GoldenRatio]]* EllipticE[1/(GoldenRatio Sqrt[2]) + 1/Sqrt[2 GoldenRatio]])]
gives :0.119996
? – Mariusz Iwaniuk Jul 06 '23 at 09:01EllipticK[k^2]
in Mathematica. See https://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html#:~:text=It%20is%20implemented%20in%20the%20Wolfram%20Language%20as%20EllipticK%5Bm%5D – Vladimir Reshetnikov Jul 06 '23 at 09:52