0

Let $H$ be a complex Hilbert space with inner product $\langle\cdot,\cdot\rangle$. We say $A\geq 0$ if $\langle Ax,x\rangle\geq0$ for all $x\in H$. If $0\leq A\leq B$ and $C\geq0$ then does $0\leq AC\leq BC$?

1 Answers1

1

Adding to the comment of user1551, lack of self-adjointness can be fixed as follows:

Let bounded linear operators $A,B,C$ on $H$ be given. If $0\leq A\leq B$ and $C\geq 0$, then $$ 0\leq \sqrt CA\sqrt C\leq\sqrt CB\sqrt C $$ where $\sqrt C$ is the unique square root of $C$.

Because $\sqrt C\geq 0$ it in particular is self-adjoint meaning $$ \langle x,\sqrt CA\sqrt Cx\rangle=\langle(\sqrt Cx),A(\sqrt Cx)\rangle\geq 0 $$ for all $x\in H$ because $A\geq 0$. Analogously one sees $\sqrt C(B-A)\sqrt C\geq 0$.

Frederik vom Ende
  • 4,345
  • 1
  • 10
  • 32