Let
- $X$ be a metric space,
- $\mathcal M(X)$ the space of all finite signed Borel measures on $X$,
- $\mathcal C_b(X)$ be the space of real-valued bounded continuous functions,
- $\mathcal C_0(X)$ be the space of real-valued continuous functions that vanish at infinity, and
- $\mathcal C_c(X)$ the space of real-valued continuous functions with compact supports.
Then $\mathcal C_b(X)$ and $\mathcal C_0(X)$ are real Banach space with supremum norm $\|\cdot\|_\infty$. Let $\mu_n,\mu \in \mathcal M(X)$. We define weak convergence by $$ \mu_n \rightharpoonup \mu \overset{\text{def}}{\iff} \int_X f \mathrm d \mu_n \to \int_X f \mathrm d \mu \quad \forall f \in \mathcal C_b(X), $$ and weak$^*$ convergence by $$ \mu_n \overset{*}{\rightharpoonup} \mu \overset{\text{def}}{\iff} \int_X f \mathrm d \mu_n \to \int_X f \mathrm d \mu \quad \forall f \in \mathcal C_c (X). $$
Below "not-too-hard" theorem is mentioned in this thread, i.e.,
Theorem: $\mu_n \rightharpoonup \mu$ if and only if $\mu_n \overset{*}{\rightharpoonup} \mu$ and $\mu_n (X) \to \mu (X)$.
I'm trying to prove it, but I'm stuck at showing $$ \lim_m\lim_n \int_X (f-f_m) \mathrm d \mu_n = 0. $$
Could you elaborate on how to finish the proof?
My attempt: One direction is obvious. Let's prove the reverse. Assume $\mu_n \overset{*}{\rightharpoonup} \mu$ and $\mu_n (X) \to \mu (X)$. Fix $f \in \mathcal C_b (X)$ and $\varepsilon>0$. Let $(\mu^+, \mu^-)$ with $\mu = \mu^+ - \mu^-$ be the Jordan decomposition of $\mu$. Let $|\mu| := \mu^+ + \mu^-$. By definition, $$ \int_X f \mathrm d \mu := \int_X f \mathrm d \mu^+ - \int_X f \mathrm d \mu^-. $$
Notice that $\mathcal C_c(X)$ is dense in $(L_1 (|\mu|), \|\cdot\|_{L_1(|\mu|)})$, so there is a sequence $(f_m) \subset L_1 (\mu|)$ such that $\|f_m - f\|_{L_1(|\mu|)} \to 0$, i.e., $$ \int_X |f_m-f| \mathrm d |\mu| \to 0 \quad \text{as} \quad m \to \infty. $$
Notice that $$ \begin{align} \left | \int_X (f_m-f) \mathrm d \mu \right | &= \left | \int_X (f_m-f) \mathrm d \mu^+ - \int_X (f_m-f) \mathrm d \mu^- \right | \\ &\le \int_X |f_m-f| \mathrm d \mu^+ + \int_X |f_m-f| \mathrm d \mu^- \\ &= \int_X |f_m-f| \mathrm d |\mu| . \end{align} $$
This implies $$ \int_X f_m \mathrm d \mu \to \int_X f \mathrm d \mu \quad \text{as} \quad m \to \infty. $$
We have a decomposition $$ \int_X f \mathrm d (\mu_n-\mu) = \int_X (f_m-f) \mathrm d \mu + \int_X f_m \mathrm d (\mu_n-\mu) + \int_X (f-f_m) \mathrm d \mu_n. $$