Recall that if $\beta = \{e_1,\dotsc,e_N\}$ is a basis for $V$, then $\wedge^n \beta := \{e_{i_1} \wedge \cdots \wedge e_{i_n}\}_{i_1 < \cdots < i_n}$ is a basis for $\wedge^n V$. Then, if we write
$$
A e_j = \sum_{i=1}^N A_{ij}e_i,
$$
we have that
$$
(\wedge^n A)(e_{j_1} \wedge \cdots \wedge e_{j_n}) = Ae_{j_1} \wedge \cdots \wedge Ae_{j_n}\\
= \left(\sum_{i_1=1}^N A_{i_1 j_1} e_{i_1} \right) \wedge \cdots \wedge \left(\sum_{i_n=1}^N A_{i_n j_n} e_{i_n} \right)\\ = \sum_{i_1 < \cdots < i_n} \left( \sum_{\pi \in S_n} (-1)^\pi A_{i_{1}j_{\pi(1)}} \cdots A_{i_{n}j_{\pi(n)}}\right) \; e_{i_1} \wedge \cdots \wedge e_{i_n}\\
= \sum_{i_1 < \cdots < i_n} [A]_\beta(i_1,\dotsc,i_n;j_1,\dotsc,j_n) \; e_{i_1} \wedge \cdots \wedge e_{i_n},
$$
where $T(i_1,\dotsc,i_n;j_1,\dotsc,j_n)$ denotes the $n$-th order minor of $T \in M_N(F)$ corresponding to the $n$ rows $i_1 < \dotsc < i_n$ and $n$ columns $j_1 < \dotsc < j_n$. Hence, $[\wedge^n A]_{\wedge^n\beta}$ is precisely the matrix of $n$-th order minors of $[A]_\beta$, and, in particular,
$$
\operatorname{Tr}(\wedge^n A) = \sum_{i_1 < \cdots < i_n} [A]_\beta(i_1,\dotsc,i_n;i_1,\dotsc,i_n) = \sum_{i_1 < \cdots < i_n} \sum_{\pi \in S_n} (-1)^\pi A_{i_{1}i_{\pi(1)}} \cdots A_{i_{n}i_{\pi(n)}}.
$$
The theoretical upshot of all this is that $\wedge^n A$ is the coordinate-free, exterior-algebraic avatar of the matrix of $n$-th order minors, just as $\wedge^N A$, in particular, is the coordinate-free, exterior-algebraic avatar of the determinant. Indeed, the adjugate of $A$ can be defined, in coordinate-free, exterior-algebraic terms, as the unique operator $A^{\text{adj}} \in \operatorname{End}(V)$ such that
$$
\forall v \in V, \; \omega \in \wedge^{N-1}V, \quad A^{\text{adj}}v \wedge \omega = v \wedge (\wedge^{N-1}A)(\omega),
$$
and you can then prove that
$$
A^{\text{adj}}A = \det(A)1_V,
$$
giving the translation into coordinate-free terms of the formula for the inverse of an invertible matrix.