If you want to play a bit with logical arguments, I offer you an alternative proof based on the contrapositive of the statement you are trying to show. Instead of proving $P\to Q$, I'll prove $\lnot Q\to \lnot P$.
We want to show that
$$(\forall x)(\forall y)[x\in \mathbb{Q}^* \land y\not \in\mathbb{Q} \to xy\not\in\mathbb{Q}],\quad(*)$$
since any number can either be rational or irrational; $\mathbb{Q}^*=\mathbb{Q}-\{0\}$. But
\begin{align*}
x\in \mathbb{Q}^* \land y\not \in\mathbb{Q} \to xy\not\in\mathbb{Q} \equiv \lnot\left(xy\not\in\mathbb{Q}\right)\to \lnot\left(x\in \mathbb{Q}^* \land y\not\in\mathbb{Q}\right)\\
\equiv xy\in\mathbb{Q}\to \left(x\not\in \mathbb{Q}^* \lor y\in\mathbb{Q}\right),\quad\quad(**)
\end{align*}
The original problems translate to proving (*). For, let $z = xy$ and assume $x\in \mathbb{Q}^+$. Then
$$
z\frac{1}{x}= (xy)\frac{1}{x} = y\in \mathbb{Q}.
$$
We used the fact that $x\neq 0$ has an inverse and that the product of two rationals is rational. This proves that (**) is true, so its equivalent version (*) must also be true. Q.E.D.