$\newcommand{\d}{\,\mathrm{d}}\newcommand{\sech}{\operatorname{sech}}\newcommand{\csch}{\operatorname{csch}}$It was recently asked, and then deleted, how to evaluate the following using contour integration: $$I=\int_0^\infty\frac{\sin^2(x)}{\sinh^2(x)}\d x\overset{?}{=}\frac{\pi\coth\pi-1}{2}$$
There is a simple real method, and I credit @KStar for finding the series expansions:
If $f(x)=-\frac{2}{1+e^{2x}}$, then $f'(x)=\sech^2(x)$ and by expanding $f$ as a geometric series we find, for $x\gt0$: $$\sech^2(x)=4\sum_{n=1}^\infty(-1)^{n-1}n\cdot e^{-2nx}$$And letting $x\mapsto x+i\pi/2$ yields: $$\csch^2(x)=4\sum_{n=1}^\infty n\cdot e^{-2nx}$$For $x\gt0$. Then: $$\begin{align}\int_0^\infty\frac{\sin^2(x)}{\sinh^2(x)}\d x&=2\sum_{n=1}^\infty n\cdot\int_0^\infty(1-\cos(2x))e^{-2nx}\d x\\&=2\sum_{n=1}^\infty n\cdot\left(\frac{1}{2n}-\frac{2n}{4n^2+4}\right)\\&=\sum_{n=1}^\infty\frac{1}{n^2+1}\\&=\frac{\pi\coth\pi-1}{2}\end{align}$$By the Mittag-Leffler expansion of $\coth$, or equivalently via an argument using the digamma function.
The new user who posted and subsequently deleted their question suggested taking a rectangular contour, limiting in $R\to\infty$ on the rectangle with base $-R\to R$, of height $i\pi$, and with a semicircular inward indent around the point $i\pi$, say of radius $\varepsilon$. The integrand $f(z)=\frac{\sin^2z}{\sinh^2z}$ is holomorphic on the boundary and interior of this contour, so the integrals over all paths sum to zero. Moreover the small strips $R\to R+i\pi,-R\to-R+i\pi$ obviously vanish.
We have: $$\begin{align}\sin(x+i\pi)&=\sin(x)\cosh(\pi)+i\sinh(\pi)\cos(x)\\\sin^2(x+i\pi)&=\sin^2(x)\cosh^2(\pi)-\cos^2(x)\sinh^2(\pi)+2i\sin(x)\cos(x)\sinh(\pi)\cosh(\pi)\\&=\sin^2(x)(1+2\sinh^2(\pi))-\sinh^2(\pi)+2i\sin(x)\cos(x)\sinh(\pi)\cosh(\pi)\end{align}$$
For asymptotically large $R$, asymptotically small $\varepsilon\gt0$ we then need to use: $$0=o(1)+I-\int_{[-R,-\varepsilon]\cup[\varepsilon,R]}\frac{\sin^2(x)(1+2\sinh^2(\pi))-\sinh^2(\pi)}{\sinh^2(x)}\d x+i\varepsilon\int_{-\pi}^0\frac{\sin^2(i\pi+\varepsilon e^{it})}{\sinh^2(\varepsilon e^{it})}e^{it}\d t\\\overset{R\to\infty}{\longrightarrow}-2\sinh^2(\pi)\cdot I+\\\lim_{\varepsilon\to0^+}\left[2\sinh^2(\pi)(1-\coth(\varepsilon))+i\varepsilon\int_{0}^\pi\frac{\sin^2(i\pi-\varepsilon e^{it})}{\sinh^2(\varepsilon e^{it})}e^{it}\d t\right]$$
The original asker claimed that it is possible to use this method to calculate the final answer (they didn't go as far, but it was implied). Taking this on good faith, I will assume this works - but I am very uncertain how to do this. The limit of the semicircular integral is, well, nasty - I'd appreciate help with the asymptotics here. I am fairly certain my calculations thus far are correct, but I unfortunately do not own a copy of Mathematica or equivalent to help me here.
It is my (purely intuitive) suspicion that the limit does not exist, but this is weird since the limit must exist, as all the other limits do and the total limit of zero obviously exists.
To present a concrete target - to get the correct evaluation, we need to show that: $$\begin{align}2\sinh^2(\pi)(I-1)&=\pi\sinh(\pi)\cosh(\pi)-3\sinh^2(\pi)\\&\overset{?}{=}\lim_{\varepsilon\to0^+}\left[i\varepsilon\int_0^\pi\frac{\sin^2(i\pi-\varepsilon e^{it})}{\sinh^2(\varepsilon e^{it})}\d t-2\sinh^2(\pi)\coth(\varepsilon)\right]\end{align}$$