(Edit: I replaced the old discussion of specific integrals in this answer with a generalization. See the history for the original.)
Wikipedia references Sagias and Karagiannidis which give the solution to a slightly different integral:
$$
\int_0^\infty \frac{k}{l} x^n (x / l)^{k - 1} \exp(-t x - (x / l)^k) \, \mathrm{d}x
=
\frac{(p / t)^{k + n} \sqrt{k}}{l^k \left(\sqrt {2 \pi}\right)^{p + q - 2} } G^{q,p}_{p,q}\left(
\left.
\begin{matrix} \frac{1-k-n}{p}, \frac{2-k-n}{p}, \dots, \frac{p-k-n}{p} \\ \frac{0}{q}, \frac{1}{q}, \dots, \frac{q-1}{q} \end{matrix}
\right|
\frac{1}{q^q}
\left( \frac{p}{l t}\right)^p \right)
$$
This is actually the expectation $E[X^n e^{-tX}]$ where $X$ is a Weibull-distributed random variable with parameters $k>0$ and $l>0$, and crucially, for rational $k=p/q$, that is, $p$ and $q$ are positive integers. (I truly apologize for mixing up the notation between the question and this answer, which uses Wikipedia's notation.) $G$ is the Meijer G function and $n\geq0$ and $t>0$.
Note that, whereas the question asks for $e^{-t/x}$ inside the integral, the above expression is $e^{-tx}$. But we can show with Sympy that the integral of the desired expression is similar:
$$
\int_0^\infty \frac{k}{l} x^n (x / l)^{k - 1} \exp(-t / x - (x / l)^k) \, \mathrm{d}x
=
\frac{(t/p)^{k + n} \sqrt{k}}{l^k \left(\sqrt {2 \pi}\right)^{p + q - 2} } G^{p+q,0}_{0,p+q}\left(
\left.
\begin{matrix} - \\ \frac{1-k-n}{p}, \frac{2-k-n}{p}, \dots, \frac{p-1-k-n}{p}, \left(-\frac{1}{q}-\frac{n}{p}\right), \frac{0}{q}, \frac{1}{q}, \dots, \frac{q-1}{q} \end{matrix}
\right|
\frac{1}{q^q}
\left( \frac{t}{l p}\right)^p \right)
$$
Note here that the integrand here is almost exactly the same as the first, but with $e^{-t/X}$, so this result is the expectation $E[X^n e^{-t/X}]$ for Weibull $X$.
With such a small change in the integrand, it's not surprising that the results have much in common. The second reciprocates some leading constants and a part of the argument to the Meijer G function, and the array parameterizing the second Meijer G function is largely the union of the parameters of the first (with a strange exception: instead of $(p-k-n)/p$ which is in the first, the second has $(p-k-n)/p-1 = -1/q-n/p$).
This expression matches numerical integration for all values I've tested (mainly for low values of $q$, for example $k=1/5$ to $4/5$).
I'd love to be able to simplify this further, but for now this is acceptable, mpmath
can evaluate the Meijer G function via a weighted combination of hypergeometric functions.
N.B. I don't quite understand many of the discussions around the convergence criteria for the integral represented by the Meijer G function, but I will note that many of the common expressions to simplify this to sums of hypergeometric functions fail because for example, with $n=0$, the difference between two of the Meijer G parameters, $(q-1)/q$ and $-1/q$ is an integer (1). I expect that the reason that some simplifications of this integral might fail is because they violate the convergence requirements, e.g., Przemo's solution?
Here's the Python code that I used in the above answer and that compares the Meijer G solution with numerical integration:
import mpmath as mp
import sympy as s
from sympy import S
def makeIntegrand2(n, k, l, t):
return lambda x: xn * (x / l)(k - 1) * s.exp(-t * x - (x / l)*k) k / l
def makeIntegrand3(n, k, l, t):
return lambda x: xn * (x / l)(k - 1) * s.exp(-t / x - (x / l)*k) k / l
k, l, x, t, n, v = s.symbols('k l x t n nu', real=True, positive=True)
f = s.exp(-t / x) * x(k - 1) * s.exp(-l * (x)k)
extraSub = {n: 2, l: 1, t: 10}
p, q = S(2), S(4)
for pp in range(1, q):
p = S(pp)
print(f'# p/q={p}/{q}')
if False:
# This is the Wikipedia/Sagias integral
print('## E[X^n exp(-t X)]')
f2 = s.simplify(xn * (x / l)(k - 1) * s.exp(-t * x - (x / l)k) * k / l)
res2 = s.integrate(f2.subs({k: p / q}), (x, 0, s.oo)).simplify()
s.pprint(res2)
meijerList2 = ([(x - (p / q) - n) / p for x in range(1, p + 1)], [x / q for x in range(int(q))])
prefix = (p / t)(p / q + n) * s.sqrt(p / q) / l(p / q) / s.sqrt(2 * s.pi)(p + q - 2)
arg = (p / l / t)p / qq
print(meijerList2) # parameters of the G function
s.pprint(prefix) # this is before the G function
s.pprint(arg) # this goes inside the G function
# continue
print('## E[X^n exp(-t / X)]')
f3 = s.simplify(xn * (x / l)(k - 1) * s.exp(-t / x - (x / l)*k) k / l)
res3 = s.integrate(f3.subs({k: p / q}), (x, 0, s.oo)).simplify()
s.pprint(res3)
meijerList = [(x - (p / q) - n) / p for x in range(1, p)] + [-1 / q - n / p
] + [x / q for x in range(int(q))]
recon = (t / p)(p / q + n) * s.sqrt(p / q) / l(p / q) / s.sqrt(
2 * s.pi)(p + q - 2) * s.meijerg(((), ()), (meijerList, ()), (t / l / p)p / q**q)
s.pprint(recon)
qres3 = mp.quad(
makeIntegrand3(n=extraSub[n], k=float(pp / q), l=extraSub[l], t=extraSub[t]), [0, mp.inf])
print('comparison', [qres3, res3.subs(extraSub).evalf(), recon.subs(extraSub).evalf()])
```
Integral[x^(v-1) * exp(b*x^2 - g * x^(-2)), x, 0, inf]
? I'll keep trying! Perhaps I'll get lucky and solutions for specific $p \neq q$ can generalize (I need $p=1/n$ for small-ish integer $n$ and $q=1$). – Ahmed Fasih Oct 11 '21 at 21:44