I came across a beautiful problem:
Solve $$\frac{1+\sqrt{1-x}}{x-\sqrt{1-x^{2}}}=2 x$$
My approach:
Obviously $x=0$ is not a solution. Now we have:
$$1+\sqrt{1-x}=2x^2-2x\sqrt{1-x^2} \tag1$$
Squaring the above equation both sides we get $$2(1+\sqrt{1-x})-x=4x^4+4x^2(1-x^2)-8x^3\sqrt{1-x^2} \tag2$$
From $(1)$ we get $$2(2x^2-2x\sqrt{1-x^2})-x=4x^2-8x^3\sqrt{1-x^2} \tag3$$
$\implies$
$$(8x^3-4x)\sqrt{1-x^2}=x \tag4$$
So we have: $$(8x^2-4)\sqrt{1-x^2}=1 \tag5$$
Letting $\sqrt{1-x^2}=p, p>0$ We get $$8p^3-4p+1=0 \tag6$$ which gives $p = 0.5, \frac{\sqrt{5}-1}{4}$
So using $x=\pm \sqrt{1-p^2}$ we get four values of $x$ as: $$x=\frac{\pm \sqrt{3}}{2}, \frac{\pm \sqrt{10+2 \sqrt{5}}}{4} \tag7$$ Out of which only $$x=\frac{-\sqrt{3}}{2}, \frac{-\sqrt{10+2 \sqrt{5}}}{4}$$ Will satisfy.
But at which step the positive extraneous roots boiled down and how to get rid them in this approach?