When I first encounter the integral $$\int_{0}^{\infty} \frac{d x}{x^{n}+1},$$ I am trying to resolve the integrand into partial fractions. Then I found it is very tedious and complicated and look for infinite series. I first split the integral into 2 parts. $$ \begin{aligned} \int_{0}^{\infty} \frac{d x}{x^{n}+1} =& \underbrace{\int_{0}^{1} \frac{d x}{x^{n}+1}}_{J} +\underbrace{\int_{1}^{\infty}\frac{d x}{x^{n}+1}}_{K} \end{aligned} $$
$$ \begin{aligned} J &=\int_{0}^{1} \sum_{k=0}^{\infty}(-1)^{k} x^{n k} d x =\sum_{k=0}^{\infty}\left[\frac{(-1)^{k} x^{n k+1}}{n k+1}\right]_{0}^{1} =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{n k+1}=\frac{1}{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+\frac{1}{n}} \end{aligned} $$
Similarly, $$ \begin{aligned} K&=\int_{1}^{\infty} \frac{1}{x^{n}+1} d x =\int_{1}^{\infty} \frac{x^{-n}}{1+x^{-n}} d x =\int_{1}^{\infty} x^{-n} \sum_{k=0}^{\infty}(-1)^{k}x^{-k n} d x=\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{-(k+1) n+1} \end{aligned}$$
Rearranging and re-indexing yields $$K=\frac{1}{n} \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{-(k+1)+\frac{1}{n}}=\frac{1}{n} \sum_{k=-1}^{-\infty} \frac{(-1)^{k}}{k+\frac{1}{n}} $$
Grouping $J$ and $K$ yields $$\int_{0}^{\infty} \frac{d x}{x^{n}+1} =\frac{1}{n}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+\frac{1}{n}}+\sum_{k=-1}^{-\infty} \frac{(-1)^{k}}{k+\frac{1}{n}}\right) $$
Using the theorem
$$ \pi \csc (\pi \alpha)=\lim _{N \rightarrow \infty} \sum_{k=-N}^{N} \frac{(-1)^{k}}{k+\alpha} $$ and putting $\alpha=\frac{1}{n}$ yields
$$\int_{0}^{\infty} \frac{d x}{x^{n}+1}=\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right).$$
My question: Is there any elementary proof?