Latest Edit
Thanks to Mr Ali Shadhar who gave a beautiful closed form of the derivative which finish the problem as $$\boxed{S_n = \frac { \pi ^ { 2 n + 1 } } { 4 ^ { n + 1 } ( 2 n ) ! } | E _ { 2 n } | }, $$
where $E_{2n}$ is an even Euler Number.
In the post, I had found the sum $$ \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}}= \frac{\pi^{3}}{32}, $$ and want to investigate it in a more general manner, $$ S_{n}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2 n+1}} $$ where $n\in N.$
$$ \begin{aligned} S_{n}&= \lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{1}{(4k+1)^{2 n+1}}-\sum_{k=0}^{N} \frac{1}{(4 k+3)^{2 n+1}} \\ &=\frac{1}{4^{2 n+1}} \lim _{N \rightarrow \infty} \left[\sum_{k=0}^{N} \frac{1}{\left(k+\frac{1}{4}\right)^{2 n+1}}-\sum_{k=0}^{N} \frac{1}{\left(k+\frac{3}{4}\right)^{2 n+1}}\right] \\ &=\frac{1}{4^{2 n+1}} \lim _{N \rightarrow \infty} \left[\sum_{k=0}^{N} \frac{1}{\left(k+\frac{1}{4}\right)^{2 n+1}}+\sum_{k=0}^{N} \frac{1}{\left(-k-\frac{3}{4}\right)^{2 n+1}}\right] \\ &=\frac{1}{4^{2 n+1}} \lim _{N \rightarrow \infty} \left[\sum_{k=0}^{N} \frac{1}{\left(k+\frac{1}{4}\right)^{2 n+1}}+\sum_{k=-N}^{-1} \frac{1}{\left(k+\frac{1}{4}\right)^{2 n+1}}\right] \\ &=\frac{1}{4^{2 n+1}}\left[\lim _{N \rightarrow \infty} \sum_{k=-N}^{N} \frac{1}{\left(k+\frac{1}{4}\right)^{2 n+1}}\right] \end{aligned} $$
Using the Theorem:
$$(*):\pi \cot (\pi z)=\lim _{N \rightarrow \infty} \sum_{k=-N}^{N} \frac{1}{k+z} ,\quad \forall z \not \in Z.$$
Differentiating (*) w.r.t. $z$ by $2 n$ times yields $$ \begin{aligned} & \lim _{N \rightarrow \infty} \sum_{k=-N}^{N} \frac{(-1)^{2 n}(2 n) !}{(k+z)^{2 n+1}}=\frac{d^{2 n}}{d z^{2 n}}[\pi \cot (\pi z)] \\ \Rightarrow & \lim _{N \rightarrow \infty} \sum_{k=-N}^{N} \frac{1}{(k+z)^{2 n+1}}=\frac{\pi}{(2 n) !} \frac{d^{2 n}}{d z^{2 n}}[\cot (\pi z)] \end{aligned} $$
Now we can conclude that $$\boxed{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2n+1}}=\left.\frac{\pi^{2n+1}}{4^{2 n+1}(2 n) !} \frac{d^{2 n}}{d z^{2 n}}[\cot z]\right|_{z=\frac{\pi}{4}}}$$
My Question: Is there any closed form for $\displaystyle \left.\frac{d^{2 n} (\cot z)}{d z^{2 n}}\right|_{z=\frac{\pi}{4}}$?