Well, we are trying to find the following integral:
$$\mathcal{I}_\text{n}\left(\alpha\right):=\int_0^\infty\frac{x^\text{n}\mathscr{J}_1\left(\alpha x\right)}{\sinh\left(x\right)}\space\text{d}x=\int_0^\infty x^\text{n}\mathscr{J}_1\left(\alpha x\right)\text{csch}\left(x\right)\space\text{d}x\tag1$$
Using the 'evaluating integrals over the positive real axis' property of the Laplace transform, we can write:
$$\mathcal{I}_\text{n}\left(\alpha\right)=\int_0^\infty\mathscr{L}_x\left[x^\text{n}\mathscr{J}_1\left(\alpha x\right)\right]_{\left(\sigma\right)}\cdot\mathscr{L}_x^{-1}\left[\text{csch}\left(x\right)\right]_{\left(\sigma\right)}\space\text{d}\sigma\tag2$$
Using known results, we can write:
$$\mathcal{I}_\text{n}\left(\alpha\right)=\left(-1\right)^\text{n}\cdot\int_0^\infty\frac{\partial^\text{n}}{\partial\sigma^\text{n}}\left(\frac{\alpha}{\alpha^2+\sigma\left(\sigma+\sqrt{\alpha^2+\sigma^2}\right)}\right)\cdot\left(2\sum_{\text{k}\space\ge\space0}\delta\left(\sigma-2\text{k}-1\right)\right)\space\text{d}\sigma\tag3$$
We can rewrite this a bit:
$$\mathcal{I}_\text{n}\left(\alpha\right)=2\left(-1\right)^\text{n}\sum_{\text{k}\space\ge\space0}\int_0^\infty\frac{\partial^\text{n}}{\partial\sigma^\text{n}}\left(\frac{\alpha}{\alpha^2+\sigma\left(\sigma+\sqrt{\alpha^2+\sigma^2}\right)}\right)\cdot\delta\left(\sigma-2\text{k}-1\right)\space\text{d}\sigma\tag4$$
Using the property:
$$\int_0^\infty\text{y}\left(x\right)\delta\left(x-\text{p}\right)\space\text{d}x=\text{y}\left(\text{n}\right)\theta\left(\text{n}\right)\tag5$$
We can write:
$$\mathcal{I}_\text{n}\left(\alpha\right)=2\left(-1\right)^\text{n}\sum_{\text{k}\space\ge\space0}\left\{\theta\left(1+2\text{k}\right)\cdot\left.\frac{\partial^\text{n}}{\partial\sigma^\text{n}}\left(\frac{\alpha}{\alpha^2+\sigma\left(\sigma+\sqrt{\alpha^2+\sigma^2}\right)}\right)\right|_{\space\sigma\space=\space1+2\text{k}}\right\}\tag6$$
Now, using the fact that when $\text{k}\in\mathbb{N}$ we get $\theta\left(1+2\text{k}\right)=1$. So we can conclude:
$$\mathcal{I}_\text{n}\left(\alpha\right)=2\left(-1\right)^\text{n}\sum_{\text{k}\space\ge\space0}\left\{\left.\frac{\partial^\text{n}}{\partial\sigma^\text{n}}\left(\frac{\alpha}{\alpha^2+\sigma\left(\sigma+\sqrt{\alpha^2+\sigma^2}\right)}\right)\right|_{\space\sigma\space=\space1+2\text{k}}\right\}\tag7$$