11

Show that $$\frac{e^{a \sin^{-1}x}}{\sqrt{1-x^2}}=1+\frac{ax}{1!}+\frac{(a^2+1^2)x^2}{2!}+\frac{a(a^2+2^2)x^3}{3!}+\frac{(a^2+1^2)(a^2+3^2)x^4}{4!}+\cdots$$ My attempt: I integrated the function and got $\frac{e^{a \sin^{-1}x}}{a}$ then I wrote the series of $e^{a \sin^{-1}x}$ but it contained terms like $(\sin^{-1}x)^2$, $(\sin^{-1}x)^3$ and so on so I could not find the series. My idea was to find the series of the anti derivative of the function and then to derivate the obtained series. Any other way to do it?

metamorphy
  • 39,111
  • 3
    This reminds me of a question from Hardy's A Course of Pure Mathematics which asks us to prove $$\cos ax=1-\frac{a^2}{2!}\sin^2x-\frac{a^2(2^2-a^2)}{4!}\sin^4x-\dots$$ Replacing $a$ with $ia$ and $x$ with $\sin^{-1}x$ we get $\cosh (a\sin^{-1}x)$ and in similar manner we can obtain the corresponding $\sinh $ series. Combining them and differentiating we get the desired result. – Paramanand Singh Jun 03 '21 at 04:04
  • 2
    The formula for $\sin ax$ (similar to the one for $\cos ax$ in last comment) is discussed here. – Paramanand Singh Jun 03 '21 at 04:15

8 Answers8

9

Let $$ f(x) = e^{a\arcsin x} = \sum\limits_{n = 0}^\infty {f_n x^n } . $$ As you already observed, $f(x)$ satisfies the non-linear ODE $(1 - x^2 )(f'(x))^2 = a^2f^2 (x)$. Differentiating this equation and dividing through by $2f'(x)$ yields $$ (1 - x^2 )f''(x) - xf'(x) - a^2 f(x) = 0. $$ Substituting the power series into this equation gives $f_0 = 1$, $f_1 = a$ (you can see from the definition that $f(0) = 1$, $f'(0) = a$) and $$ f_{n + 2} = \frac{{a^2+n^2}}{{(n + 1)(n + 2)}}f_n $$ for $n\geq 0$. The power series expansion you are asking for then follows since $$ \frac{{e^{a\arcsin x} }}{{\sqrt {1 - x^2 } }} = \frac{1}{a}f'(x) = \sum\limits_{n = 0}^\infty {\frac{{(n + 1)f_{n + 1} }}{a}x^n } . $$

Gary
  • 31,845
8

It is possible to follow your idea, by showing that the series for $s(x)=e^{a\sin^{-1}x}$ conjectured from the RHS (via integration) satisfies $s(0)=1$ and $s'(x)=as(x)(1-x^2)^{-1/2}$, considering the last expression as the Cauchy product of $as(x)$ and the binomial series $(1-x^2)^{-1/2}$. This results in a recurrence for the coefficients of $s(x)$, which is possible (but not at all easy) to verify.

An easier (and more straightforward) approach for me is via complex analysis. Let $$f(z)=\frac{e^{a\sin^{-1}z}}{\sqrt{1-z^2}}=\sum_{n=0}^\infty a_n z^n,\qquad a_n=\frac{1}{2\pi i}\oint\frac{f(z)}{z^{n+1}}\,dz;$$ here $f(z)$ is analytic on $|z|<1$, and the integral is taken along any simple (positively oriented) contour encircling $z=0$ closely enough. If we substitute $z=\sin w$ in the integral (and note that simple contours encircling $w=0$ closely enough map to similar contours in the $z$-plane), we get $$a_n=\frac{1}{2\pi i}\oint\frac{e^{aw}\,dw}{\sin^{n+1}w}.$$

Now we use integration by parts, in the form of $\oint f'(w)g(w)\,dw=-\oint f(w)g'(w)\,dw$, where $f(w)$ and $g(w)$ are analytic on a domain containing the path of integration. This gives, for $n>1$, $$\oint\frac{e^{aw}\,dw}{\sin^{n-1}w}=\frac{n-1}{a}\oint e^{aw}\frac{\cos w}{\sin^n w}\,dw=\frac{n-1}{a^2}\oint e^{aw}\left(\frac{\sin w}{\sin^n w}+n\frac{\cos^2 w}{\sin^{n+1}w}\right)dw,$$ i.e. $a^2 a_{n-2}=(n-1)\big(a_{n-2}+n(a_n-a_{n-2})\big)$ or $\color{blue}{n(n-1)a_n=\big(a^2+(n-1)^2\big)a_{n-2}}$.

With $a_0=1$ and $a_1=a$ computed any way you like, the result follows by induction.

metamorphy
  • 39,111
2

Hint

You face a problem of composition of series.

Start with $$\sin ^{-1}(x)=x+\frac{x^3}{6}+\frac{3 x^5}{40}+O\left(x^7\right)$$ $$a\sin ^{-1}(x)=ax+a\frac {x^3}{6}+a\frac{3 x^5}{40}+O\left(x^7\right)$$ Now, use $$e^{a \sin ^{-1}(x)}=\exp\Big[ax+a\frac {x^3}{6}+a\frac{3 x^5}{40}+O\left(x^7\right) \Big]$$ when done, work the denominator and use long division.

Edit

Your idea of using the antiderivative is very good. You could even continue using the logarithm of it and then go backward.

1

We can use your idea of finding the antiderivative. We have:

\begin{align} e^{a\sin^{-1}(x)}& =1+a\sin^{-1}x+\dfrac{(a\sin^{-1}x)^2}{2!}+...+\dfrac{(a\sin^{-1}x)^5}{5!}+...\\ &=1+a\left(x+\dfrac{x^3}{6}+\dfrac{3x^5}{40}+...\right)+\dfrac{a^2}{2!}\left(x+\dfrac{x^3}{6}+...\right)^2+\dfrac{a^3}{3!}\left(x+\dfrac{x^3}{6}+...\right)^3+\dfrac{a^4}{4!}x^4+\dfrac{a^5}{5!}x^5+...\\ &=1+a\left(x+\dfrac{x^3}{6}+\dfrac{3x^5}{40}+...\right)+\dfrac{a^2}{2!}\left(x^2+\dfrac{x^4}{3}+...\right)+\dfrac{a^3}{3!}\left(x^3+\dfrac{x^5}{2}+...\right)+\dfrac{a^4}{4!}x^4+\dfrac{a^5}{5!}x^5+...\\ &=1+ax+\dfrac{a^2x^2}{2!}+\left(\dfrac{ax^3}{3!}+\dfrac{a^3x^3}{3!}\right)+\left(\dfrac{a^2x^4}{3!}+\dfrac{a^4x^4}{4!}\right)+\left(\dfrac{3ax^5}{40}+\dfrac{a^3x^5}{2\cdot3!}+\dfrac{a^5x^5}{5!}\right)+...\\ &=1+ax+\dfrac{a^2x^2}{2!}+\dfrac{(a+a^3)x^3}{3!}+\dfrac{(4a^2+a^4)x^4}{4!}+\dfrac{(9a+10a^3+a^5)x^5}{5!}+...\\ \end{align} Thus, $\dfrac{1}{a}e^{a\sin^{-1}(x)}=\dfrac{1}{a}+x+\dfrac{ax^2}{2!}+\dfrac{(1+a^2)x^3}{3!}+\dfrac{(4a+a^3)x^4}{4!}+\dfrac{(9+10a^2+a^4)x^5}{5!}+...$ Finally, take the derivative on both sides and we are done.

Hello
  • 2,133
1

In [1, p. 3, (2.7)] and [2, pp. 210--211, (10.49.33) and (10.49.34)], the formulas \begin{equation}\label{arcsin-pochhammer}\tag{Q1} \sum_{k=0}^{\infty}\frac{(\textrm{i} a)_{k/2}}{(\textrm{i} a+1)_{-k/2}}\frac{(-\textrm{i} x)^k}{k!} =\exp\biggl(2a\arcsin\frac{x}{2}\biggr) \end{equation} and \begin{equation}\label{JO(833)}\tag{Q2} \sum_{k=0}^{\infty}\frac{\bigl(\textrm{i} a+\frac{1}{2}\bigr)_{k/2}}{\bigl(\textrm{i} a+\frac{1}{2}\bigr)_{-k/2}} \frac{(-\textrm{i} x)^k}{k!} =\frac{2}{\sqrt{4-x^2}\,}\exp\biggl(2a\arcsin\frac{x}{2}\biggr) \end{equation} were collected, where $\textrm{i}=\sqrt{-1}$ is the imaginary unit, the extended Pochhammer symbol $(z)_\alpha$ for $z,\alpha\in\mathbb{C}$ such that $z+\alpha\ne0,-1,-2,\dotsc$ is defined by \begin{equation}\label{extended-Pochhammer-dfn}\tag{Q3} (z)_{\alpha}=\frac{\Gamma(z+\alpha)}{\Gamma(z)}, \end{equation} and the Euler gamma function $\Gamma(z)$ is defined [3, Chapter 3] by \begin{equation*} \Gamma(z)=\lim_{n\to\infty}\frac{n!n^z}{\prod_{k=0}^n(z+k)}, \quad z\in\mathbb{C}\setminus\{0,-1,-2,\dotsc\}. \end{equation*} In \eqref{arcsin-pochhammer} and \eqref{JO(833)}, replacing $x$ by $2x$ and employing the extended Pochhammer symbol in \eqref{extended-Pochhammer-dfn} gives \begin{align}\label{arcsin-pochhammer-binomial} \textrm{e}^{2a\arcsin x} &=\sum_{k=0}^{\infty}(-2\textrm{i})^k \frac{\Gamma\bigl(\textrm{i} a+\frac{k}{2}\bigr)}{\Gamma(\textrm{i} a)} \frac{\Gamma(\textrm{i} a+1)}{\Gamma\bigl(\textrm{i} a-\frac{k}{2}+1\bigr)}\frac{x^k}{k!}\\ &=1+\textrm{i} a\sum_{k=1}^{\infty}(-2\textrm{i})^k \binom{\textrm{i} a+\frac{k}{2}-1}{k-1}\frac{x^k}{k}\tag{Q4} \end{align} and \begin{equation}\label{JO(833)-x2(2x)}\tag{Q5} \boxed{\frac{\textrm{e}^{2a\arcsin x}}{\sqrt{1-x^2}\,} =\sum_{k=0}^{\infty} (-2\textrm{i})^k\frac{\Gamma\bigl(\textrm{i} a+\frac{1+k}{2}\bigr)}{\Gamma\bigl(\textrm{i} a+\frac{1-k}{2}\bigr)}\frac{x^k}{k!} =\sum_{k=0}^{\infty} (-2\textrm{i})^k\binom{\textrm{i} a+\frac{k-1}{2}}{k}x^k}, \end{equation} where the extended binomial coefficient $\binom{z}{w}$ is defined in [4] by \begin{equation}\label{Gen-Coeff-Binom}\tag{Q6} \binom{z}{w}= \begin{cases} \dfrac{\Gamma(z+1)}{\Gamma(w+1)\Gamma(z-w+1)}, & z\not\in\mathbb{N}_-,\quad w,z-w\not\in\mathbb{N}_-\\ 0, & z\not\in\mathbb{N}_-,\quad w\in\mathbb{N}_- \text{ or } z-w\in\mathbb{N}_-\\ \dfrac{\langle z\rangle_w}{w!},& z\in\mathbb{N}_-, \quad w\in\mathbb{N}_0\\ \dfrac{\langle z\rangle_{z-w}}{(z-w)!}, & z,w\in\mathbb{N}_-, \quad z-w\in\mathbb{N}_0\\ 0, & z,w\in\mathbb{N}_-, \quad z-w\in\mathbb{N}_-\\ \infty, & z\in\mathbb{N}_-, \quad w\not\in\mathbb{Z} \end{cases} \end{equation} in terms of the gamma function $\Gamma(z)$ and the falling factorial \begin{equation}\label{Fall-Factorial-Dfn-Eq} \langle z\rangle_k= \prod_{\ell=0}^{k-1}(z-\ell)= \begin{cases} z(z-1)\dotsm(z-k+1), & k\in\mathbb{N};\\ 1,& k=0. \end{cases} \end{equation}

The above texts are excerpted from the first proof of Theorem 1 in the paper [5] below.

References

  1. J. M. Borwein and M. Chamberland, Integer powers of arcsin, Int. J. Math. Math. Sci. 2007, Art. ID 19381, 10 pages; available online at https://doi.org/10.1155/2007/19381.
  2. E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, USA, 1975.
  3. N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996; available online at http://dx.doi.org/10.1002/9781118032572.
  4. C.-F. Wei, Integral representations and inequalities of extended central binomial coefficients, Math. Methods Appl. Sci. (2022), in press; available online at https://doi.org/10.1002/mma.8115.
  5. B.-N. Guo, D. Lim, and F. Qi, Maclaurin's series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function, Appl. Anal. Discrete Math. 16 (2022), no. 2, 427--466; available online at https://doi.org/10.2298/AADM210401017G.
qifeng618
  • 1,691
  • Related links:

    https://math.stackexchange.com/a/4270180, https://math.stackexchange.com/a/4379986, https://math.stackexchange.com/a/4379999, https://math.stackexchange.com/a/4380027, https://math.stackexchange.com/a/4657809.

    – qifeng618 Mar 13 '23 at 02:26
0

For $m\in\mathbb{N}=\{1,2,\dotsc\}$ and $|t|<1$, the function $\bigl(\frac{\arcsin t}{t}\bigr)^{m}$, whose value at $t=0$ is defined to be $1$, has Maclaurin's series expansion \begin{equation}\label{arcsin-series-expansion-unify}\tag{QS} \boxed{\biggl(\frac{\arcsin t}{t}\biggr)^{m} =1+\sum_{k=1}^{\infty} (-1)^k\frac{Q(m,2k;2)}{\binom{m+2k}{m}}\frac{(2t)^{2k}}{(2k)!}}, \end{equation} where \begin{equation}\label{Q(m-k)-sum-dfn} Q(m,k;\alpha)=\sum_{\ell=0}^{k} \binom{m+\ell-1}{m-1} s(m+k-1,m+\ell-1)\biggl(\frac{m+k-\alpha}{2}\biggr)^{\ell} \end{equation} for $m,k\in\mathbb{N}$ and $\alpha\in\mathbb{R}$ such that $m+k\ne\alpha$ and $s(m+k-1,m+\ell-1)$ is the Stirling number of the first kind.

The above texts are excerpted from Theorem 1 in the paper [1] below.

Combining the nice general form \eqref{arcsin-series-expansion-unify} for the series expansion $(\arcsin t)^m$ with other incomplete answers above, one can derive alternative answers to the question.

References

  1. Bai-Ni Guo, Dongkyu Lim, and Feng Qi, Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions, AIMS Mathematics 6 (2021), no. 7, 7494--7517; available online at https://doi.org/10.3934/math.2021438.
  2. B.-N. Guo, D. Lim, and F. Qi, Maclaurin's series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function, Appl. Anal. Discrete Math. 16 (2022), no. 2, 427--466; available online at https://doi.org/10.2298/AADM210401017G.
  3. Feng Qi, Explicit formulas for partial Bell polynomials, Maclaurin's series expansions of real powers of inverse (hyperbolic) cosine and sine, and series representations of powers of Pi, Research Square (2021), available online at https://doi.org/10.21203/rs.3.rs-959177/v3.
  4. Feng Qi, Taylor's series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi, Demonstratio Mathematica 55 (2022), no. 1, 710--736; available online at https://doi.org/10.1515/dema-2022-0157.
  5. Feng Qi and Mark Daniel Ward, Closed-form formulas and properties of coefficients in Maclaurin's series expansion of Wilf's function, arXiv (2021), available online at https://arxiv.org/abs/2110.08576v1.
qifeng618
  • 1,691
  • 4
    This does not answer the question. It is more like a self-promotion. – Gary Feb 12 '22 at 02:00
  • @Gary In the above question and related answers, the series expansion $(\arcsin x)^m$ for $m\ge2$ are mentioned several times. So I think I provided a possible answer. Because I obtained the general form for the series expansion $(\arcsin x)^m$ for $m\ge2$, I have no way to avoid self-promotion. – qifeng618 Feb 12 '22 at 02:16
  • They were mentioned because of a faild approach. Your other answer is slightly better since it gives the expansion in question but does not show how to derive it. As you can see, the OP knew the final result but did not know how to obtain it. – Gary Feb 12 '22 at 02:21
  • @Gary Those approaches were not failed, but incomplete. If making use of my series expansions for $(\arcsin x)^m$, they can find correct and complete answer too. – qifeng618 Feb 12 '22 at 02:26
  • @Gary Because the proofs of my series expansion for $(\arcsin x)^m$ are longer and have been formally published or announced as preprints, I think it is not necessary to copy my proofs from my papers or preprints again. If someone wants to know details in my proofs, he/she can download, print, and read my papers and preprints. – qifeng618 Feb 12 '22 at 02:29
  • @qifeng618: You can always edit your answers. If your think your other answer is incomplete, you should edit it to include this information, rather than writing a separate answer. – Jacob Manaker Feb 12 '22 at 02:45
  • @Jacob Manaker Because the copyright problem or issue, I cannot copy the full and original information from the formally accepted or published papers. Later, I will consider how to cope with this. – qifeng618 Feb 12 '22 at 04:03
  • @qifeng618: That's a separate problem. My point is: you have two answers to this question: answer $A$, containing content $a$, and answer $B$, containing content $b$. But $b$ is related to $a$, so you should edit $A$ to contain $a\cup b$ and then delete $B$. – Jacob Manaker Feb 12 '22 at 20:14
  • @Jacob Manaker I don’t think so. A is A, B is B, A and B are different from each other. We shouldn’t combine two different answers into one, as we shouldn’t combine a tractor and a car into one vehicle and then discard the tractor, or the car, or both. – qifeng618 Feb 12 '22 at 23:03
0

Now we quote some texts in [1, pp. 124--125] as follows.

Expanding $\sin(tx)$ and $\cos(tx)$ in powers of $\sin x$, we have \begin{equation*} \sin(tx)=t\sum_{n=0}^{\infty}(-1)^n\prod_{k=1}^{n}\bigl[t^2-(2k-1)^2\bigr]\frac{\sin^{2n+1}x}{(2n+1)!} \end{equation*} and \begin{equation*} \cos(tx)=\sum_{n=0}^{\infty}(-1)^n\prod_{k=0}^{n-1}\bigl[t^2-(2k)^2\bigr]\frac{\sin^{2n}x}{(2n)!} \end{equation*} for $|x|<\frac{\pi}{2}$ and all values of $t$. But \begin{equation*} \sin(tx)=\sum_{n=0}^{\infty}(-1)^n\frac{(tx)^{2n+1}}{(2n+1)!} \quad\text{and}\quad \cos(tx)=\sum_{n=0}^{\infty}(-1)^n\frac{(tx)^{2n}}{(2n)!}. \end{equation*}

These texts recited from [1, pp. 124--125] are equivalent to the equality \begin{equation}\label{exp-arsin-b(t)0series}\tag{Q} \textrm{e}^{t\arcsin x}=\sum_{\ell=0}^{\infty}\frac{b_\ell(t)x^\ell}{\ell!} \end{equation} used in [2, pp.262--263, Proposition 15], [3, p. 3], [4, p.308], and [5, pp. 49--50], where $b_0(t)=1$, $b_1(t)=t$, \begin{equation*} b_{2\ell}(t)=\prod_{k=0}^{\ell-1}\bigl[t^2+(2k)^2\bigr],\quad b_{2\ell+1}(t)=t\prod_{k=1}^{\ell}\bigl[t^2+(2k-1)^2\bigr] \end{equation*} for $\ell\in\mathbb{N}$. The equality \eqref{exp-arsin-b(t)0series} has also been applied in Section 2 in the paper [6].

In [7, Lemmas 3.1 and 3.2], the quantities $b_{2\ell}(t)$ and $b_{2\ell+1}(t)$ are expanded as finite sums in terms of the first kind Stirling numbers $s(n,k)$.

These texts are excerpted from Remark 14 in the paper [8] below.

References

  1. I. J. Schwatt, An Introduction to the Operations with Series, Chelsea Publishing Co., New York, 1924; available online at http://hdl.handle.net/2027/wu.89043168475.
  2. B. C. Berndt, Ramanujan's Notebooks, Part I, With a foreword by S. Chandrasekhar, Springer-Verlag, New York, 1985; available online at https://doi.org/10.1007/978-1-4612-1088-7.
  3. J. M. Borwein and M. Chamberland, Integer powers of arcsin, Int. J. Math. Math. Sci. 2007, Art. ID 19381, 10 pages; available online at https://doi.org/10.1155/2007/19381.
  4. A. I. Davydychev and M. Yu. Kalmykov, New results for the $\varepsilon$-expansion of certain one-, two- and three-loop Feynman diagrams, Nuclear Phys. B 605 (2001), no. 1-3, 266--318; available online at https://doi.org/10.1016/S0550-3213(01)00095-5.
  5. M. Yu. Kalmykov and A. Sheplyakov, lsjk--a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions, Computer Phys. Commun. 172 (2005), no. 1, 45--59; available online at https://doi.org/10.1016/j.cpc.2005.04.013.
  6. B.-N. Guo, D. Lim, and F. Qi, Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions, AIMS Math. 6 (2021), no. 7, 7494--7517; available online at https://doi.org/10.3934/math.2021438.
  7. F. Qi, Taylor's series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi, Demonstratio Mathematica 55 (2022), no. 1, 710--736; available online at https://doi.org/10.1515/dema-2022-0157.
  8. B.-N. Guo, D. Lim, and F. Qi, Maclaurin's series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function, Appl. Anal. Discrete Math. 16 (2022), no. 2, 427--466; available online at https://doi.org/10.2298/AADM210401017G.
qifeng618
  • 1,691
0

It is clear that, for $n\ge0$, \begin{align*} \Biggl(\frac{\operatorname{e}^{a\arcsin x}}{\sqrt{1-x^2}\,}\Biggr)^{(n)} &=\frac1a\frac{\operatorname{d}^{n+1}}{\operatorname{d}x^{n+1}}(\operatorname{e}^{a\arcsin x})\\ &=\frac1a\sum_{k=1}^{n+1} \operatorname{e}^{a\arcsin x} B_{n+1,k}\bigl((a\arcsin x)', (a\arcsin x)'', \dotsc, (a\arcsin x)^{n-k+2}\bigr)\\ &\to\sum_{k=1}^{n+1} a^{k-1} B_{n+1,k}\bigl((\arcsin x)'|_{x=0}, (\arcsin x)''|_{x=0}, \dotsc, (\arcsin x)^{n-k+2}|_{x=0}\bigr), \quad x\to0\\ &=\sum_{k=1}^{n+1} a^{k-1} B_{n+1,k}\bigl(1,0,1,0,9,0,225,0,\dotsc, (\arcsin x)^{n-k+2}|_{x=0}\bigr)\\ &=\sum_{\ell=0}^{n} a^{n-\ell} B_{n+1,n+1-\ell}\bigl(1,0,1,0,9,0,225,0,\dotsc, (\arcsin x)^{\ell+1}|_{x=0}\bigr)\\ &=a^n+\sum_{j=1}^{\lfloor{n/2}\rfloor} a^{n-2j} B_{n+1,n+1-2j}\bigl(1,0,1,0,9,0,225,0,\dotsc, (\arcsin x)^{2j+1}|_{x=0}\bigr)\\ &=a^n+a^{n}\sum_{j=1}^{\lfloor{n/2}\rfloor} (-1)^{j} \biggl(\frac2a\biggr)^{2j} \sum_{k=0}^{2j} \binom{n+k-2j}{n-2j} s(n,n+k-2j)\biggl(\frac{n-1}{2}\biggr)^{k}, \end{align*} where an empty sum is understood to be $0$ and we used the formulas \begin{equation}\label{Bell-arccos-arcsin-Eq1} \begin{split} &\quad B_{2r+k,k}\bigl(1, 0, 1, 0, 9, 0, 225,0,\dotsc,[(2r-3)!!]^2, 0, [(2r-1)!!]^2\bigr)\\ &=B_{2r+k,k}\bigl((\arcsin t)'|_{t=0}, (\arcsin t)''|_{t=0}, \dotsc, (\arcsin t)^{(2r+1)}\big|_{t=0}\bigr)\\ &=(-1)^k B_{2r+k,k}\bigl((\arccos t)'|_{t=0}, (\arccos t)''|_{t=0}, \dotsc, (\arccos t)^{(2r+1)}\big|_{t=0}\bigr)\\ &=(-1)^{r}2^{2r} \sum_{j=0}^{2r} \binom{k+j-1}{k-1} s(k+2r-1,k+j-1)\biggl(\frac{k+2r-2}{2}\biggr)^{j} \end{split} \end{equation} and \begin{equation}\label{Bell-arccos-arcsin-Eq2} \begin{split} &\quad B_{2r+k-1,k}\bigl(1,0,1,0,9,0,225,0,\dotsc,[(2r-3)!!]^2,0\bigr)\\ &=B_{2r+k-1,k}\bigl((\arcsin t)'|_{t=0}, (\arcsin t)''|_{t=0}, \dotsc, (\arcsin t)^{(2r)}\big|_{t=0}\bigr)\\ &=(-1)^kB_{2r+k-1,k}\bigl((\arccos t)'|_{t=0}, (\arccos t)''|_{t=0}, \dotsc, (\arccos t)^{(2r)}\big|_{t=0}\bigr)\\ &=0 \end{split} \end{equation} for $r,k\in\mathbb{N}$. Consequently, we acquire \begin{equation*} \frac{\operatorname{e}^{a\arcsin x}}{\sqrt{1-x^2}\,} =\sum_{n=0}^\infty a^n\Biggl[1+\sum_{j=1}^{\lfloor{n/2}\rfloor} (-1)^{j} \biggl(\frac2a\biggr)^{2j} \sum_{k=0}^{2j} \binom{n+k-2j}{n-2j} s(n,n+k-2j)\biggl(\frac{n-1}{2}\biggr)^{k}\Biggr]\frac{x^n}{n!} \end{equation*} for $|x|<1$.

References

  1. F. Qi, Explicit formulas for partial Bell polynomials, Maclaurin's series expansions of real powers of inverse (hyperbolic) cosine and sine, and series representations of powers of Pi, Research Square (2021), available online at https://doi.org/10.21203/rs.3.rs-959177/v3.
  2. Bai-Ni Guo, Dongkyu Lim, and Feng Qi, Maclaurin's series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function, Applicable Analysis and Discrete Mathematics 16 (2022), no. 2, 427--466; available online at https://doi.org/10.2298/AADM210401017G.
  3. Feng Qi, Taylor's series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi, Demonstratio Mathematica 55 (2022), no. 1, 710--736; available online at https://doi.org/10.1515/dema-2022-0157.
qifeng618
  • 1,691