Let me offer a constructive proof.
Lemma 1. For invertible and symmetric matrix $A$, and vectors $x$ and $y$, we have
$$
x^{'}A^{-1}x = \underset{y}{max\, \, } 2{x}'y - {y}'Ay
$$
Lemma 2. For invertable matrices $A$ and $B$, we have
$$
(A + C) ^{-1} = A^{-1} - A^{-1} (A ^{-1} + C ^{-1}) ^{-1} A ^{-1}
$$
Theorem. If $A > 0$, $B > 0$, $A$ and $B$ are symmetric matricex, and $A > B$, then $ B ^{-1} > A ^{-1} $.
Proof. By Lemma 1, we have
$$x ^{'} ( B ^{-1} - A ^{-1} ) x = \underset{y}{max\, \, } 2{x}'y - {y}' ( B ^{-1} - A ^{-1} ) ^{-1} y$$
Let $ y = A ^{-1} x $, we have
$$ x ^{'} ( B ^{-1} - A ^{-1} ) x \ge 2x ^{'} A ^{-1} x - x ^{'} A ^{-1} ( B ^{-1} - A ^{-1} ) ^ {-1} A ^{-1} x $$
Then by Lemma 2, we have
$$ x ^{'} ( B ^{-1} - A ^{-1} ) x \ge x ^{'} A ^{-1} x + x ^{'} ( A - B ) ^{-1} x $$
By assumption, $ A > 0 $, so $ A ^{-1} > 0 $. Also $ A > B $, i.e. $ A - B > 0 $, so $ (A - B ) ^ {-1} > 0$.
Thus the LHS of above equation is greater than 0, so $ B ^{-1} - A ^{-1} > 0 $, i.e. $ B ^{-1} > A ^{-1} $.
EDIT: typos.