$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\half}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\sum_{n = 0}^{\infty}{1 \over 2^{5n}}{2n \choose n}^{2}
={\root{\pi} \over \Gamma^{\,2}\pars{3/4}}}$
\begin{align}
&\bbox[10px,#ffd]{\sum_{n = 0}^{\infty}{1 \over 2^{5n}}
{2n \choose n}^{2}} =
\sum_{n = 0}^{\infty}{1 \over 2^{5n}}
\bracks{{-1/2 \choose n}\pars{-4}^{n}}^{2}
\\[5mm] = &\
\sum_{n = 0}^{\infty}{1 \over 2^{n}}{-1/2 \choose n}
\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{-1/2} \over z^{n +1}}
\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1}{1 \over z\root{z + 1}}
\sum_{n = 0}^{\infty}{-1/2 \choose n}\pars{1 \over 2z}^{n}
\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1}{1 \over z\root{z + 1}}
\pars{1 + {1 \over 2z}}^{-1/2}\,{\dd z \over 2\pi\ic} =
\oint_{\verts{z}\ =\ 1}{\root{z} \over z\root{z + 1}\root{z + 1/2}}
\,{\dd z \over 2\pi\ic}
\\[5mm] = &
-\int_{-1}^{-1/2}{\root{-z}\ic \over
z\root{z + 1}\root{-z - 1/2}\ic}\,{\dd z \over 2\pi\ic} -\int_{-1/2}^{0}{\root{-z}\ic \over
z\root{z + 1}\root{z + 1/2}}\,{\dd z \over 2\pi\ic}
\\[2mm] & -
\int_{0}^{-1/2}{\root{-z}\pars{-\ic} \over
z\root{z + 1}\root{z + 1/2}}\,{\dd z \over 2\pi\ic} -\int_{-1/2}^{-1}{\root{-z}\pars{-\ic} \over
z\root{z + 1}\root{-z - 1/2}\pars{-\ic}}\,{\dd z \over 2\pi\ic}
\\[5mm] = &
{1 \over 2\pi\ic}\int_{1/2}^{1}{\root{z} \over
z\root{1 - z}\root{z - 1/2}}\,\dd z +
{1 \over 2\pi}\int_{0}^{1/2}{\root{z} \over
z\root{1 - z}\root{1/2 - z}}\,\dd z
\\[2mm] & +
{1 \over 2\pi}\int_{0}^{1/2}{\root{z} \over
z\root{1 - z}\root{1/2 - z}}\,\dd z -
{1 \over 2\pi\ic}\int_{1/2}^{1}
{\root{z} \over z\root{1 - z}\root{z - 1/2}}\,\dd z
\\[5mm] = &\
{1 \over \pi}\
\underbrace{\int_{0}^{1/2}{\root{z} \over
z\root{1 - z}\root{1/2 - z}}\,\dd z}
_{\ds{2\root{2\pi}\Gamma\pars{5/4} \over \Gamma\pars{3/4}}}\ =\
{2\root{2\pi} \over \pi}\,{\pars{1/4}\Gamma\pars{1/4} \over \Gamma\pars{3/4}}
\\[5mm] = &\
{\root{2\pi} \over 2\pi}\,{\Gamma\pars{3/4}\Gamma\pars{1/4} \over \Gamma^{2}\pars{3/4}} =
{\root{2\pi} \over 2\pi}\,{\pi/\sin\pars{\pi/4} \over \Gamma^{2}\pars{3/4}} =
{\root{2\pi} \over 2\pars{1/\root{2}}}\,{1 \over \Gamma^{2}\pars{3/4}}
\\[5mm] = &\
\bbox[10px,#ffd,border:2px groove navy]
{\Large{\root{\pi} \over \Gamma^{2}\pars{3/4}}}
\approx 1.1803
\end{align}
The last integral is evaluated with the replacement
$\ds{z = \sin^{2}\pars{\theta}}$ which follows the
${\tt @Random Variable}$ answer procedure. The identity
$\ds{{2n \choose n} = {-1/2 \choose n}\pars{-4}^{n}}$ is
derived in this link.