In my post, I started to investigate the integral $\displaystyle \int_{0}^{\infty} \frac{\ln x}{x^{2}-1} d x$. Fortunately, $$\displaystyle \int_{0}^{\infty} \frac{\ln x}{x^{2}-1} d x =2 \int_{0}^{1} \frac{\ln x}{x^{2}-1} d x.$$
So we only need to evaluate the integral $J$ using series and integration by part. $\displaystyle \begin{aligned} J\displaystyle & = \int_{0}^{1} \frac{\ln x}{1-x^{2}} d x =\sum_{k=0}^{\infty} \int_{0}^{1} x^{2 k} \ln x d x=\sum_{k=0}^{\infty}\left(\left[\frac{x^{2 k+1} \ln x}{2 k+1}\right]_{0}^{1}-\frac{1}{2 k+1} \int_{0}^{1} x^{2 k+1} \cdot \frac{1}{x} d x\right) \\\displaystyle &=-\sum_{k=0}^{\infty}\frac{1}{(2 k+1)^{2}}=-\frac{\pi^{2}}{8} \end{aligned} \tag*{} $
$$\therefore \displaystyle \int_{0}^{\infty} \frac{\ln x}{x^{2}-1} d x =-2J=\frac{\pi^{2}}{4} $$
However, when I began to increase the power $n$, I found, in Wolframalpha, that there is a pattern for the integral$$ I_{n}=\int_{0}^{\infty} \frac{\ln x}{x^{n}-1} d x $$ $$ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline I_{n} & \text { Diverges } & \frac{\pi^{2}}{4} & \frac{4 \pi^{2}}{27} & \frac{\pi ^2}{8} & \frac{8 \pi^{2}}{25(5-\sqrt{5})} & \frac{\pi^{2}}{9} & \frac{\pi^{2}}{49} \csc ^{2}\left(\frac{\pi}{7}\right) & \frac{\pi^{2}}{64} \csc ^{2}\left(\frac{\pi}{8}\right) \\ \hline \end{array} $$ By the pattern, let’s guess the formula for $I_n$ as $$ I_{n}=\left(\frac{\pi}{n}\right)^{2}\csc ^{2}\left(\frac{\pi}{n}\right). $$
How to prove it? Is it difficult or interesting? Looking forward to your suggestions and proofs.