I am looking for irreducible polynomials to construct finite fields. In this case I need a degree $4$ irreducible polynomial over $\mathbb{Z}_3$. Is $f(x)=x^4+x+2$ irreducible over $\mathbb{Z}_3$? I don't have much practice proving the irreducibility of a polynomial. So I am not sure what I have done. It's okay?
First, I have that $f(x)$ has no roots in $\mathbb{Z}_3$. If $f(x)$ was reducible, noting that there are no $x^3$ term in $f(x)$. So the factorization could be $(x^2+2x+c)(x^2+x+d)$, where $c,d \in \mathbb{Z}_3$ ($2 \equiv -1 \pmod 3$). So, $$x^4+x+2=x^4+(c+d+2)x^2+(c+2d)x+cd$$ Then $c+d+2=0$, $c+2d=1$ and $cd=2$. But of the first two equalities I have to $d=0$, wich is impossible since $cd\neq 0$. Thus $f(x)$ is irreducible over $\mathbb{Z}_3$.