Part I
The Faa di Bruno formula can be described in terms of the Bell polynomials of the second kind $B_{n,k}\bigl(x_1,x_2,\dotsc,x_{n-k+1}\bigr)$ by
\begin{equation}\label{Bruno-Bell-Polynomial}\tag{1}
\frac{\textrm{d}^n}{\textrm{d}x^n}f\circ h(x)=\sum_{k=1}^nf^{(k)}(h(x)) B_{n,k}\bigl(h'(x),h''(x),\dotsc,h^{(n-k+1)}(x)\bigr), \quad n\ge1.
\end{equation}
See the site https://math.stackexchange.com/a/4261764/945479.
The Bell polynomials of the second kind satisfy
\begin{equation}\label{Bell(n-k)}\tag{2}
B_{n,k}\bigl(abx_1,ab^2x_2,\dotsc,ab^{n-k+1}x_{n-k+1}\bigr) =a^kb^nB_{n,k}(x_1,x_2,\dotsc,x_{n-k+1})
\end{equation}
for $n\ge k\ge0$. See the site https://math.stackexchange.com/a/4262657/945479.
For $n\ge1$, by the formulas \eqref{Bruno-Bell-Polynomial} and \eqref{Bell(n-k)}, we have
\begin{align}
\bigl[e^{1/(1-x)}\bigr]^{(n)}
&=\sum_{k=1}^ne^{1/(1-x)}B_{n,k}\biggl(\frac{1!}{(1-x)^2}, \frac{2!}{(1-x)^3}, \dotsc,\frac{(n-k+1)!}{(1-x)^{n-k+2}}\biggr)\\
&=e^{1/(1-x)}\sum_{k=1}^n\frac{1}{(1-x)^{n+k}}B_{n,k}(1!, 2!, \dotsc,(n-k+1)!)\\
&=e^{1/(1-x)}\sum_{k=1}^n\frac{1}{(1-x)^{n+k}}\binom{n}{k}\binom{n-1}{k-1}(n-k)!\\
&\to e\sum_{k=1}^n\binom{n}{k}\binom{n-1}{k-1}(n-k)!, \quad x\to0,
\end{align}
where we used the formula
\begin{equation}\label{Bell-factorial-eq}\tag{1}
B_{n,k}(1!,2!,\dotsc,(n-k+1)!)=\binom{n}{k}\binom{n-1}{k-1}(n-k)!, \quad n\ge k\ge0,
\end{equation}
which was reviewed at https://math.stackexchange.com/a/4262340/945479. Consequently, the series expansion of $e^{1/(1-x)}$ around $x=0$ is
\begin{equation}
e^{1/(1-x)}=e\sum_{n=0}^\infty \Biggl[\sum_{k=1}^n\binom{n}{k}\binom{n-1}{k-1}(n-k)!\Biggr]\frac{x^n}{n!}
=e\sum_{n=0}^\infty \Biggl[\sum_{k=1}^n\frac{1}{k!}\binom{n-1}{k-1}\Biggr]x^n, \quad |x|<1.
\end{equation}
Part II
Let $f_1(x)=e^{x^3}$ and $f_2(x)=e^{x^5}$. Then
\begin{align}
[f_1(x)f_2(x)]^{(18)}
&=\sum_{n=0}^{18}\binom{18}{n}f_1^{(n)}(x)f_2^{(18-n)}(x)\\
&=\sum_{n=0}^{18}\binom{18}{n}\Biggl[e^{x^3}\sum_{k=0}^n x^{3k-n} \sum _{j=k}^n 3^js(n,j)S(j,k)\Biggr]\\
&\quad\times\Biggl[e^{x^5}\sum_{k=0}^{18-n} x^{5k-(18-n)} \sum _{j=k}^{18-n}5^j s(18-n,j)S(j,k)\Biggr]\\
&\to\sum_{n=0}^{18}\binom{18}{n}\lim_{x\to0}\Biggl(\frac1{x^{18}}\Biggl[\sum_{k=0}^n x^{3k} \sum _{j=k}^n 3^js(n,j)S(j,k)\Biggr] \\
&\quad\times\Biggl[\sum_{k=0}^{18-n} x^{5k} \sum _{j=k}^{18-n}5^j s(18-n,j)S(j,k)\Biggr]\Biggr), \quad x\to0,
\end{align}
where we used the formula
\begin{equation*}
\bigl(e^{x^\alpha}\bigr)^{(n)}
=e^{x^\alpha}\sum_{k=0}^n x^{k\alpha-n} \sum _{j=k}^n s(n,j)\alpha^jS(j,k), \quad n\ge0
\end{equation*}
at the site https://math.stackexchange.com/a/4262657/945479. The rest argument is left to readers and the proposer of this question.