This is inspired by Finding the $18th$ Derivative of a Particular Product at $x = 0$
If $f(x) = e^{x^a}$, what is $f^{(n)}(x)$, the $n$-th derivative of $f$ and what is $\lim_{x \to 0^+} f^{(n)}(x)/x^{a-n}$.
I'm sure that this is a duplicate, but I haven't been able to find it.
My conjecture is that $f^{(n)}(x) =f(x)ax^{a-n}g_n(x, a) $ where $g_n(x, a) =a^{n-1}x^{a(n-1)}+\sum_{k=0}^{n-1}c(a, n, k)x^{ka} $, the $c(a, n, k) $ are polynomials in $a$ of degree $n-1$, and $g_n(0,a) =c(a, n, 0) =\prod_{k=1}^{n-1} (a-k) =\dfrac{(a-1)!}{(a-n)!} $.
Note: I just added my derivation of the recurrence for the $c(a, n, k)$. It's messy, so there is a fair chance of error(s).
Here is what I've done.
The following was done with Wolfy and https://www.derivative-calculator.net
$\begin{array}\\ f'(x) &=ax^{a-1}f(x)\\ f''(x) &=a x^{a - 2} (a x^a + a - 1)f(x)\\ f'''(x) &=f(x) (a^3 x^{3 a - 3} + (a - 1) a^2 x^{2 a - 3} + a^2 (2 a - 2) x^{2 a - 3} + (a - 2) (a - 1) a x^{a - 3})\\ &=f(x)x^{a-3} (a^3 x^{2 a} + (a - 1) a^2 x^{ a} + a^2 (2 a - 2) x^{ a} + (a - 2) (a - 1)a)\\ &=f(x)ax^{a-3} (a^2 x^{2 a} + ((a - 1) a+a (2 a - 2) ) x^{ a} + (a - 2) (a - 1))\\ &=f(x)ax^{a-3} (a^2 x^{2 a} + 3(a - 1) a x^{ a} + (a - 2) (a - 1))\\ f''''(x) &=ax^{a-4}f(x)\left(a^3x^{3a}+\left(6a^3-6a^2\right)x^{2a}+\left(7a^3-18a^2+11a\right)x^a+a^3-6a^2+11a-6\right)\\ &=ax^{a-4}f(x)\left(a^3x^{3a}+6a^2(a-1)x^{2a}+a (a - 1) (7 a - 11)x^a+(a - 1) (a - 2) (a - 3)\right)\\ ...\\ f^{(n)}(x) &=f(x)ax^{a-n}g_n(x, a)\\ g_1(x, a) &= 1\\ g_2(x, a) &= ax^a+a-1\\ g_3(x, a) &= a^2 x^{2 a} + 3(a - 1) a x^{ a} + (a - 2) (a - 1)\\ g_4(x) &=a^3x^{3a}+6a^2(a-1)x^{2a}+a (a - 1) (7 a - 11)x^a+(a - 1) (a - 2) (a - 3)\\ ...\\ g_n(x, a) &=a^{n-1}x^{a(n-1)}+\sum_{k=0}^{n-1}c(a, n, k)x^{ka}\\ \end{array} $
It looks like $g_n(0, a) =c(a, n, 0) =\prod_{k=1}^{n-1} (a-k) =\dfrac{(a-1)!}{(a-n)!} $ (the last for integer $a$).
I'm quite sure that the existence of the $g_n(x, a)$ can be confirmed by induction, but finding the form of the recurrence, though probably straightforward, would take more work than I am willing to do right now.
Maybe later.
And here it is.
If $f(x) =\prod_{k=1}^m f_k(x) $, then, removing the "$(x)$", $\ln f =\sum_{k=1}^m f_k $ so, differentiating, $\dfrac{f'}{f} =\sum_{k=1}^m \dfrac{f_k'}{f_k} $ so that $f' =\sum_{k=1}^m f_k'\prod_{j=1, j\ne k}^m f_j $.
Since
$\begin{array}\\ f^{(n)}(x) &=f(x)ax^{a-n}g_n(x, a),\\ f^{(n+1)}(x) &=(f(x)ax^{a-n}g_n(x, a))'\\ &=f'(x)ax^{a-n}g_n(x, a)+f(x)a(x^{a-n})'g_n(x, a)+f(x)ax^{a-n}g_n'(x, a)\\ &=ax^{a-1}f(x)ax^{a-n}g_n(x, a)+f(x)a(a-n)x^{a-n-1}g_n(x, a)+f(x)ax^{a-n}g_n'(x, a)\\ &=a^2x^{2a-n-1}f(x)g_n(x, a)+f(x)a(a-n)x^{a-n-1}g_n(x, a)+f(x)ax^{a-n}g_n'(x, a)\\ &=f(x)ax^{a-n-1}(ax^{a}g_n(x, a)+(a-n)g_n(x, a)+xg_n'(x, a))\\ &=f(x)ax^{a-n-1}((ax^{a}+a-n)g_n(x, a)+xg_n'(x, a))\\ \text{so}\\ g_{n+1}(x, a) &=(ax^{a}+a-n)g_n(x, a)+xg_n'(x, a)\\ \text{Since}\\ g_n(x, a) &=a^{n-1}x^{a(n-1)}+\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ g_n'(x, a) &=a^{n-1}a(n-1)x^{a(n-1)-1}+\sum_{k=0}^{n-2}kac(a, n, k)x^{ka-1}\\ &=a^{n}(n-1)x^{a(n-1)-1}+\sum_{k=0}^{n-2}kac(a, n, k)x^{ka-1}\\ \text{so}\\ g_{n+1}(x, a) &=(ax^{a}+a-n)(a^{n-1}x^{a(n-1)}+\sum_{k=0}^{n-2}c(a, n, k)x^{ka})\\ &+x(a^{n}(n-1)x^{a(n-1)-1}+\sum_{k=0}^{n-2}kac(a, n, k)x^{ka-1})\\ &=(ax^{a}+a-n)a^{n-1}x^{a(n-1)}+(ax^{a}+a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka})\\ &+a^{n}(n-1)x^{a(n-1)}+\sum_{k=0}^{n-2}kac(a, n, k)x^{ka}\\ &=ax^{a}a^{n-1}x^{a(n-1)}+(a-n)a^{n-1}x^{a(n-2)}+ax^{a}\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+(a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+a^{n}(n-1)x^{a(n-2)}+\sum_{k=1}^{n-2}kac(a, n, k)x^{ka}\\ &=ax^{a}a^{n-1}x^{a(n-1)}+(a-n)a^{n-1}x^{a(n-2)} +a\sum_{k=0}^{n-2}c(a, n, k)x^{(k+1)a}\\ &+(a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+a^{n}(n-1)x^{a(n-2)}+\sum_{k=1}^{n-2}kac(a, n, k)x^{ka}\\ &=ax^{a}a^{n-1}x^{a(n-1)}+((a-n)a^{n-1}+a^{n}(n-1))x^{a(n-2)}\\ &+\sum_{k=1}^{n-1}ac(a, n, k-1)x^{ka}\\ &+(a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+\sum_{k=1}^{n-2}kac(a, n, k)x^{ka}\\ &=ax^{a}a^{n-1}x^{a(n-1)}+(a^n-na^{n-1}+na^{n}-a^n)x^{a(n-2)}\\ &+\sum_{k=1}^{n-2}ac(a, n, k-1)x^{ka} +ac(a, n, n-2)x^{(n-1)a}\\ &+(a-n)c(a, n, 0)+(a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+\sum_{k=1}^{n-2}kac(a, n, k)x^{ka}\\ &=a^{n}x^{an}+ac(a, n, n-2)x^{(n-1)a}+na^{n-1}(a-1)x^{a(n-2)}\\ &+(a-n)c(a, n, 0)\\ &+\sum_{k=1}^{n-2}(ac(a, n, k-1)+(a-n)+kac(a, n, k))x^{ka}\\ \text{Matching}\\ g_{n+1}(x, a) &=a^{n}x^{an}+\sum_{k=0}^{n-1}c(a, n+1, k)x^{ka}\\ c(a, n+1, n-1) &=ac(a, n, n-2)\\ c(a, n+1, n-2) &=na^{n-1}(a-1)+ac(a, n, n-3)+(a-n)+(n-2)ac(a, n, n-2)\\ c(a, n+1, 0) &=(a-n)c(a, n, 0)\\ c(a, n+1, k) &=ac(a, n, k-1)+(a-n)+kac(a, n, k) \quad\text{for }k=1..n-3\\ \end{array} $