2

This is inspired by Finding the $18th$ Derivative of a Particular Product at $x = 0$

If $f(x) = e^{x^a}$, what is $f^{(n)}(x)$, the $n$-th derivative of $f$ and what is $\lim_{x \to 0^+} f^{(n)}(x)/x^{a-n}$.

I'm sure that this is a duplicate, but I haven't been able to find it.

My conjecture is that $f^{(n)}(x) =f(x)ax^{a-n}g_n(x, a) $ where $g_n(x, a) =a^{n-1}x^{a(n-1)}+\sum_{k=0}^{n-1}c(a, n, k)x^{ka} $, the $c(a, n, k) $ are polynomials in $a$ of degree $n-1$, and $g_n(0,a) =c(a, n, 0) =\prod_{k=1}^{n-1} (a-k) =\dfrac{(a-1)!}{(a-n)!} $.

Note: I just added my derivation of the recurrence for the $c(a, n, k)$. It's messy, so there is a fair chance of error(s).

Here is what I've done.

The following was done with Wolfy and https://www.derivative-calculator.net

$\begin{array}\\ f'(x) &=ax^{a-1}f(x)\\ f''(x) &=a x^{a - 2} (a x^a + a - 1)f(x)\\ f'''(x) &=f(x) (a^3 x^{3 a - 3} + (a - 1) a^2 x^{2 a - 3} + a^2 (2 a - 2) x^{2 a - 3} + (a - 2) (a - 1) a x^{a - 3})\\ &=f(x)x^{a-3} (a^3 x^{2 a} + (a - 1) a^2 x^{ a} + a^2 (2 a - 2) x^{ a} + (a - 2) (a - 1)a)\\ &=f(x)ax^{a-3} (a^2 x^{2 a} + ((a - 1) a+a (2 a - 2) ) x^{ a} + (a - 2) (a - 1))\\ &=f(x)ax^{a-3} (a^2 x^{2 a} + 3(a - 1) a x^{ a} + (a - 2) (a - 1))\\ f''''(x) &=ax^{a-4}f(x)\left(a^3x^{3a}+\left(6a^3-6a^2\right)x^{2a}+\left(7a^3-18a^2+11a\right)x^a+a^3-6a^2+11a-6\right)\\ &=ax^{a-4}f(x)\left(a^3x^{3a}+6a^2(a-1)x^{2a}+a (a - 1) (7 a - 11)x^a+(a - 1) (a - 2) (a - 3)\right)\\ ...\\ f^{(n)}(x) &=f(x)ax^{a-n}g_n(x, a)\\ g_1(x, a) &= 1\\ g_2(x, a) &= ax^a+a-1\\ g_3(x, a) &= a^2 x^{2 a} + 3(a - 1) a x^{ a} + (a - 2) (a - 1)\\ g_4(x) &=a^3x^{3a}+6a^2(a-1)x^{2a}+a (a - 1) (7 a - 11)x^a+(a - 1) (a - 2) (a - 3)\\ ...\\ g_n(x, a) &=a^{n-1}x^{a(n-1)}+\sum_{k=0}^{n-1}c(a, n, k)x^{ka}\\ \end{array} $

It looks like $g_n(0, a) =c(a, n, 0) =\prod_{k=1}^{n-1} (a-k) =\dfrac{(a-1)!}{(a-n)!} $ (the last for integer $a$).

I'm quite sure that the existence of the $g_n(x, a)$ can be confirmed by induction, but finding the form of the recurrence, though probably straightforward, would take more work than I am willing to do right now.

Maybe later.

And here it is.


If $f(x) =\prod_{k=1}^m f_k(x) $, then, removing the "$(x)$", $\ln f =\sum_{k=1}^m f_k $ so, differentiating, $\dfrac{f'}{f} =\sum_{k=1}^m \dfrac{f_k'}{f_k} $ so that $f' =\sum_{k=1}^m f_k'\prod_{j=1, j\ne k}^m f_j $.

Since

$\begin{array}\\ f^{(n)}(x) &=f(x)ax^{a-n}g_n(x, a),\\ f^{(n+1)}(x) &=(f(x)ax^{a-n}g_n(x, a))'\\ &=f'(x)ax^{a-n}g_n(x, a)+f(x)a(x^{a-n})'g_n(x, a)+f(x)ax^{a-n}g_n'(x, a)\\ &=ax^{a-1}f(x)ax^{a-n}g_n(x, a)+f(x)a(a-n)x^{a-n-1}g_n(x, a)+f(x)ax^{a-n}g_n'(x, a)\\ &=a^2x^{2a-n-1}f(x)g_n(x, a)+f(x)a(a-n)x^{a-n-1}g_n(x, a)+f(x)ax^{a-n}g_n'(x, a)\\ &=f(x)ax^{a-n-1}(ax^{a}g_n(x, a)+(a-n)g_n(x, a)+xg_n'(x, a))\\ &=f(x)ax^{a-n-1}((ax^{a}+a-n)g_n(x, a)+xg_n'(x, a))\\ \text{so}\\ g_{n+1}(x, a) &=(ax^{a}+a-n)g_n(x, a)+xg_n'(x, a)\\ \text{Since}\\ g_n(x, a) &=a^{n-1}x^{a(n-1)}+\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ g_n'(x, a) &=a^{n-1}a(n-1)x^{a(n-1)-1}+\sum_{k=0}^{n-2}kac(a, n, k)x^{ka-1}\\ &=a^{n}(n-1)x^{a(n-1)-1}+\sum_{k=0}^{n-2}kac(a, n, k)x^{ka-1}\\ \text{so}\\ g_{n+1}(x, a) &=(ax^{a}+a-n)(a^{n-1}x^{a(n-1)}+\sum_{k=0}^{n-2}c(a, n, k)x^{ka})\\ &+x(a^{n}(n-1)x^{a(n-1)-1}+\sum_{k=0}^{n-2}kac(a, n, k)x^{ka-1})\\ &=(ax^{a}+a-n)a^{n-1}x^{a(n-1)}+(ax^{a}+a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka})\\ &+a^{n}(n-1)x^{a(n-1)}+\sum_{k=0}^{n-2}kac(a, n, k)x^{ka}\\ &=ax^{a}a^{n-1}x^{a(n-1)}+(a-n)a^{n-1}x^{a(n-2)}+ax^{a}\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+(a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+a^{n}(n-1)x^{a(n-2)}+\sum_{k=1}^{n-2}kac(a, n, k)x^{ka}\\ &=ax^{a}a^{n-1}x^{a(n-1)}+(a-n)a^{n-1}x^{a(n-2)} +a\sum_{k=0}^{n-2}c(a, n, k)x^{(k+1)a}\\ &+(a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+a^{n}(n-1)x^{a(n-2)}+\sum_{k=1}^{n-2}kac(a, n, k)x^{ka}\\ &=ax^{a}a^{n-1}x^{a(n-1)}+((a-n)a^{n-1}+a^{n}(n-1))x^{a(n-2)}\\ &+\sum_{k=1}^{n-1}ac(a, n, k-1)x^{ka}\\ &+(a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+\sum_{k=1}^{n-2}kac(a, n, k)x^{ka}\\ &=ax^{a}a^{n-1}x^{a(n-1)}+(a^n-na^{n-1}+na^{n}-a^n)x^{a(n-2)}\\ &+\sum_{k=1}^{n-2}ac(a, n, k-1)x^{ka} +ac(a, n, n-2)x^{(n-1)a}\\ &+(a-n)c(a, n, 0)+(a-n)\sum_{k=0}^{n-2}c(a, n, k)x^{ka}\\ &+\sum_{k=1}^{n-2}kac(a, n, k)x^{ka}\\ &=a^{n}x^{an}+ac(a, n, n-2)x^{(n-1)a}+na^{n-1}(a-1)x^{a(n-2)}\\ &+(a-n)c(a, n, 0)\\ &+\sum_{k=1}^{n-2}(ac(a, n, k-1)+(a-n)+kac(a, n, k))x^{ka}\\ \text{Matching}\\ g_{n+1}(x, a) &=a^{n}x^{an}+\sum_{k=0}^{n-1}c(a, n+1, k)x^{ka}\\ c(a, n+1, n-1) &=ac(a, n, n-2)\\ c(a, n+1, n-2) &=na^{n-1}(a-1)+ac(a, n, n-3)+(a-n)+(n-2)ac(a, n, n-2)\\ c(a, n+1, 0) &=(a-n)c(a, n, 0)\\ c(a, n+1, k) &=ac(a, n, k-1)+(a-n)+kac(a, n, k) \quad\text{for }k=1..n-3\\ \end{array} $

marty cohen
  • 107,799

2 Answers2

2

If that's all you want, then it is simple enough to verify this inductively:

$$\frac{\mathrm d}{\mathrm dx}f(x)\big((a)_nx^{a-n}+\mathcal O\big(x^{2a-n}\big)\big)=f(x)\big((a)_{n+1}x^{a-(n+1)}+\mathcal O\big(x^{2a-(n+1)}\big)\big)$$

where $(a)_n$ is the falling factorial.

1

Let \begin{equation*}%\label{Fall-Factorial-Dfn-Eq} \langle\alpha\rangle_n= \prod_{k=0}^{n-1}(\alpha-k)= \begin{cases} \alpha(\alpha-1)\dotsm(\alpha-n+1), & n\ge1\\ 1,& n=0 \end{cases} \end{equation*} denotes the falling factorial of $\alpha\in\mathbb{C}$ respectively.

In Remark 3.1 of the paper [1] below, the formula \begin{equation}\label{Bell-1-lambda}\tag{1} B_{n,k}\Biggl(1, 1-\alpha, (1-\alpha)(1-2\alpha),\dotsc, \prod_{\ell=0}^{n-k}(1-\ell\alpha)\Biggr) =\frac{(-1)^k}{k!} \sum_{\ell=0}^k (-1)^{\ell} \binom{k}{\ell} \prod_{q=0}^{n-1}(\ell-q\alpha) \end{equation} for $\alpha\in\mathbb{C}$ and $n\ge k\ge0$ was concluded.

In Theorem 2.1 of the paper [2] below, the formula \begin{equation}\label{Bell-fall-Eq}\tag{2} B_{n,k}(\langle\alpha\rangle_1, \langle\alpha\rangle_2, \dotsc,\langle\alpha\rangle_{n-k+1}) =\frac{(-1)^k}{k!}\sum_{\ell=0}^{k}(-1)^{\ell}\binom{k}{\ell}\langle\alpha\ell\rangle_n \end{equation} for $n\ge k\ge0$ and $\alpha\in\mathbb{R}$ was established.

The formulas \eqref{Bell-1-lambda} and \eqref{Bell-fall-Eq} were reviewed in Section 1.3 of the article [3] below.

The formulas \eqref{Bell-1-lambda} and \eqref{Bell-fall-Eq} are equivalent to \begin{equation}\tag{6} B_{n,k}(\langle\alpha\rangle_1, \langle\alpha\rangle_2, \dotsc,\langle\alpha\rangle_{n-k+1}) =\sum _{j=k}^n s(n,j)\alpha^jS(j,k) \end{equation} for $n\ge k\ge0$ and $\alpha\in\mathbb{R}$ at https://mathoverflow.net/a/88071/147732, where $s(n,j)$ and $S(j,k)$ stand for the Stirling numbers of the first and second kinds respectively.

The Faa di Bruno formula (see Theorem 11.4 in the book [4] and Theorem C on page 139 in the monograph [5] below) can be described in terms of the Bell polynomials of the second kind $B_{n,k}\bigl(x_1,x_2,\dotsc,x_{n-k+1}\bigr)$ by \begin{equation}\label{Bruno-Bell-Polynomial}\tag{1} \frac{\textrm{d}^n}{\textrm{d}x^n}f\circ h(x)=\sum_{k=0}^nf^{(k)}(h(x)) B_{n,k}\bigl(h'(x),h''(x),\dotsc,h^{(n-k+1)}(x)\bigr), \quad n\ge0. \end{equation} Then we have \begin{align*} \bigl(\textrm{e}^{x^\alpha}\bigr)^{(n)} &=\textrm{e}^{x^\alpha}\sum_{k=0}^nB_{n,k}\bigl(\langle\alpha\rangle_1x^{\alpha-1}, \langle\alpha\rangle_2x^{\alpha-2}, \dotsc, \langle\alpha\rangle_{n-k+1}x^{\alpha-(n-k+1)}\bigr)\\ &=\textrm{e}^{x^\alpha}\sum_{k=0}^n x^{k\alpha-n} B_{n,k}(\langle\alpha\rangle_1, \langle\alpha\rangle_2, \dotsc, \langle\alpha\rangle_{n-k+1})\\ &=\textrm{e}^{x^\alpha}\sum_{k=0}^n x^{k\alpha-n} \sum _{j=k}^n s(n,j)\alpha^jS(j,k) \end{align*} for $n\ge0$, where we used the identity \begin{equation}\label{Bell(n-k)} B_{n,k}\bigl(abx_1,ab^2x_2,\dotsc,ab^{n-k+1}x_{n-k+1}\bigr) =a^kb^nB_{n,k}(x_1,x_2,\dotsc,x_{n-k+1}) \end{equation} for $n\ge k\ge0$ on page 135 in the monograph [5]. Accordingly, we obtain \begin{align} \lim_{x\to0^+}\frac{\bigl(\textrm{e}^{x^\alpha}\bigr)^{(n)}}{x^{\alpha-n}} &=\lim_{x\to0^+}\Biggl[\textrm{e}^{x^\alpha}\sum_{k=1}^n x^{(k-1)\alpha} \sum _{j=k}^n s(n,j)\alpha^jS(j,k)\Biggr]\\ &=\begin{cases}\displaystyle \sum _{j=1}^n s(n,j)\alpha^jS(j,k), & \alpha>0;\\ 0, & \alpha=0;\\ (-1)^n\infty, & \alpha<0. \end{cases} \end{align}

References

  1. B.-N. Guo and F. Qi, Viewing some ordinary differential equations from the angle of derivative polynomials, Iran. J. Math. Sci. Inform. 16 (2021), no. 1, 77--95; available online at https://doi.org/10.29252/ijmsi.16.1.77.
  2. Feng Qi, Da-Wei Niu, Dongkyu Lim, and Bai-Ni Guo, Closed formulas and identities for the Bell polynomials and falling factorials, Contributions to Discrete Mathematics 15 (2020), no. 1, 163--174; available online at https://doi.org/10.11575/cdm.v15i1.68111.
  3. Feng Qi, Da-Wei Niu, Dongkyu Lim, and Yong-Hong Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, Journal of Mathematical Analysis and Applications 491 (2020), no. 2, Paper No.124382, 31 pages; available online at https://doi.org/10.1016/j.jmaa.2020.124382.
  4. C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
  5. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., 1974; available online at https://doi.org/10.1007/978-94-010-2196-8.
  6. https://math.stackexchange.com/a/4261764/945479.
qifeng618
  • 1,691
  • Thank you for providing links that are available online. – marty cohen Sep 29 '21 at 20:02
  • The equation (6) is proved in the paper "Siqintuya Jin, Bai-Ni Guo, and Feng Qi, Partial Bell polynomials, falling and rising factorials, Stirling numbers, and combinatorial identities, Computer Modeling in Engineering & Sciences vol. 132 (2022), no. 3, 781--799; available online at https://doi.org/10.32604/cmes.2022.019941". – qifeng618 Mar 11 '23 at 13:46