3

I try to compute -- or at least estimate -- the $n$-th derivatives of a composition of real valued smooth functions using Faà di Bruno formula. This yields formulae involving exponential partial Bell polynomials.

$\bullet$ The first task consists in computing $B_{n,k}(2!,3!,\ldots,(n-k+2)!)$ for $n\geq0$ and $0\leq k\leq n$. While a nice formula (using Lah numbers) exists for $B_{n,k}(1!,2!,\ldots,(n-k+1)!)$ (see for example Comtet book [Com] "Advanced Combinatorics: The Art of Finite and Infinite Expansions", page 135), I did not manage to find any formula for the shifted arguments. So I tried myself to find one: let $\Phi(t,u)$ be the generating function of partial Bell polynomials \begin{align*} \Phi(t,u)&:=\exp\left(\sum_{m=1}^{+\infty}x_m\frac{t^m}{m!}\right)=\sum_{k=0}^{+\infty}\sum_{n=0}^{+\infty}B_{n,k}(x_1,\ldots,x_{n-k+1})\frac{t^n}{n!}u^k \end{align*} as defined in [Com, page 133]. We compute for $x_m:=(m+1)!$: \begin{align*} \Phi(t,u)=\exp\left(u\sum_{m=1}^{+\infty}x_m\frac{t^m}{m!}\right)&=\exp\left(u\sum_{m=1}^{+\infty}(m+1)t^m\right)\\ % &=\exp\left(u\left[\frac{\mathrm{d}}{\mathrm{d}t}\sum_{m=0}^{+\infty}t^m-1\right]\right)\\ % &=\exp\left(u\left[\frac{1}{(1-t)^2}-1\right]\right)\\ % &=\exp\left(tu\frac{2-t}{(1-t)^2}\right)\\ % &=\sum_{k=0}^{+\infty}\frac{t^ku^k}{k!}\frac{(2-t)^k}{(1-t)^{2k}}\\ % &=\sum_{k=0}^{+\infty}\sum_{\ell=0}^{+\infty}\frac{t^ku^k}{k!}\left(\sum_{j=0}^{k}\binom{k}{j}2^{k-j}(-1)^jt^j\right)\frac{(\ell+2k-1)\ldots(\ell+1)}{(2k-1)!}t^\ell\\ % &=\sum_{k=0}^{+\infty}\sum_{\ell=0}^{+\infty}\sum_{j=0}^{k}\frac{t^{k+\ell+j}u^k}{k!}\binom{k}{j}2^{k-j}(-1)^j\frac{(\ell+2k-1)!}{\ell!(2k-1)!}\\ % &=\sum_{k=0}^{+\infty}\sum_{j=0}^{k}\sum_{n=k+j}^{+\infty}\frac{t^{n}u^k}{k!}\binom{k}{j}2^{k-j}(-1)^j\frac{(n-j+k-1)!}{(n-j-k)!(2k-1)!}. \end{align*} I struggle finishing the computation because of the new sum over $j\in\{0,\ldots,k\}$. In particular, I could conclude if I could have $\sum_{k=0}^{+\infty}\sum_{n=k}^{+\infty}\frac{t^{n}u^k}{k!}\ldots$ but my sum over $n$ starts with $n=k+j$ or I have a $t^{n+k}$ instead of $t^n$. Any help there would be appreciated.
EDIT. Following G Cab's nice idea there Asymptotics of a function involving factorials, I think I have obtained the answer to the first question (using the notation $x^{(n)}:=x(x+1)\ldots(x+n-1)$ for the rising factorial to fix the problem with $2k-1$ when $k=0$ in the above formula): \begin{align*} \Phi(t,u)&=\sum_{k=0}^{+\infty}\sum_{n=k}^{+\infty}\sum_{j=0}^{\min\{k,\,n-k\}}\frac{t^{n}u^k}{k!}\binom{k}{j}2^{k-j}(-1)^j\frac{(2k)^{(n-k-j)}}{(n-k-j)!} \end{align*} where the last equality above is justified by the following: \begin{align*} \sum_{k=0}^{+\infty}\sum_{j=0}^{k}\sum_{n=k+j}^{+\infty}f(k,j,n)&=\sum_{k=0}^{+\infty}\sum_{j=0}^{+\infty}\sum_{n=0}^{+\infty}f(k,j,n)\big[0\leq k<+\infty]\big[0\leq j\leq k\big]\big[k+j\leq n<+\infty\big]\\ % &=\sum_{k=0}^{+\infty}\sum_{j=0}^{+\infty}\sum_{n=0}^{+\infty}f(k,j,n)\big[0\leq k<+\infty]\big[0\leq j\leq k,\,k+j\leq n<+\infty\big]\\ % &=\sum_{k=0}^{+\infty}\sum_{n=0}^{+\infty}\sum_{j=0}^{+\infty}f(k,j,n)\big[0\leq k<+\infty]\big[k\leq n<+\infty\big]\big[0\leq j\leq k,\,0\leq k+j\leq n\big]\\ % &=\sum_{k=0}^{+\infty}\sum_{n=k}^{+\infty}\sum_{j=0}^{+\infty}f(k,j,n)\big[0\leq j\leq\min\{k,\,n-k\}\big]\\ % &=\sum_{k=0}^{+\infty}\sum_{n=k}^{+\infty}\sum_{j=0}^{\min\{k,\,n-k\}}f(k,j,n). \end{align*} I used the Iverson symbol: \begin{align*} \big[P(k,j,n)\big]&:=\begin{cases} 1&\text{if $P(k,j,n)$ is true},\\ 0&\text{if $P(k,j,n)$ is false}. \end{cases} \end{align*} Identifying the coefficient in front of $\frac{t^nu^k}{n!}$ in $\Phi(t,u)$, we find:


\begin{align*} B_{n,k}(2!,\ldots,(n-k+2)!)&=\sum_{j=0}^{\min\{k,\,n-k\}}\binom{k}{j}2^{k-j}(-1)^j\frac{(2k)^{(n-k-j)}n!}{(n-k-j)!k!}. \end{align*}
I would appreciate if somebody could check this formula.

$\bullet$ Next, and this actually is the motivation of the previous part, I want to compute \begin{align*} \sum_{k=2}^{n}\frac{(-1)^{k-1}a^{k}(2k-3)!}{4^{k}(k-2)!}B_{n,k}\left(2!,3!,\ldots,(n-k+2)!\right)\qquad\qquad n\geq 2, \end{align*} for some real number $a\in(0,1)$. We can remove $a$ by bounding it by $1$ if needed, but it would be a bit better to let it. I expect that the coefficients $B_{n,k}\left(2!,3!,\ldots,(n-k+2)!\right)$ are some (kinds of) multiples of Lah numbers, but as I do not have their expression I can not go on there -- however, we could cut off the first part if a direct answer can be directly provided, while it would be interesting to have the answer to the first part as well. At the end of the course, I expect that the answer is bounded by something like $(n+1)!$. Here again, any help would be welcome.
EDIT. Using the above formula in the EDIT, the sum becomes: \begin{align*} \sum_{k=2}^{n}\frac{(-1)^{k-1}a^{k}(2k-3)!}{4^{k}(k-2)!}\sum_{j=0}^{\min\{k,\,n-k\}}\binom{k}{j}2^{k-j}(-1)^j\frac{(2k)^{(n-k-j)}n!}{(n-k-j)!k!}\qquad\qquad n\geq 2, \end{align*}

Nicolas
  • 3,326

1 Answers1

2

For $n\ge k\ge0$, the Bell polynomials of the second kind $B_{n,k}$ satisfy \begin{equation}\label{Bell-factorial-eq}\tag{1} B_{n,k}(1!,2!,\dotsc,(n-k+1)!)=\binom{n}{k}\binom{n-1}{k-1}(n-k)! \end{equation} and \begin{equation}\label{Bell-2!-3!}\tag{2} B_{n,k}(2!,3!,\dotsc,(n-k+2)!) =\frac{n!}{k!}\sum_{\ell=0}^k(-1)^{k-\ell} \binom{k}{\ell}\binom{n+2\ell-1}{n}, \end{equation} where $\binom{q}{0}=1$ for all $q\in\mathbb{C}$.

The formula \eqref{Bell-factorial-eq} can be found on page 450 in the book [1] below, on page 135 in the monograph [2], on pages 27--28 (Remark 3.5) in the paper [3], in Lemma 3.4 of the paper [4], Section 1.3 in [5], Lemma 6 of the paper [6] below. In particular, we emphasize that there was an alternative proof of the formula \eqref{Bell-factorial-eq} on pages 27--28 (Remark 3.5) in the paper [3].

The formula \eqref{Bell-2!-3!} was cited in Lemma 3.4 of the paper [4], reviewed in Section 1.8 (pp. 8--9) of the paper [5], and proved in Lemma 6 of the paper [6] below.

We recite the proof in Lemma 6 of the paper [6] for the formula \eqref{Bell-2!-3!} as follows.

On page 133 in [2], it was stated that \begin{equation}\label{113-final-formula}\tag{3} \frac1{k!}\Biggl(\sum_{m=1}^\infty x_m\frac{t^m}{m!}\Biggr)^k =\sum_{n=k}^\infty B_{n,k}(x_1,x_2,\dotsc,x_{n-k+1})\frac{t^n}{n!} \end{equation} for $k\ge0$. Hence, it follows from \eqref{113-final-formula} that \begin{align*} \sum_{n=k}^\infty B_{n,k}(2!,3!,\dotsc,(n-k+2)!)\frac{t^n}{n!} &=\frac1{k!}\Biggl(\sum_{m=1}^\infty (m+1)!\frac{t^m}{m!}\Biggr)^k\\ &=\frac1{k!}\biggl[\frac{1}{(t-1)^2}-1\biggr]^k\\ &=\frac1{k!}\sum_{\ell=0}^k(-1)^{k-\ell}\binom{k}{\ell}\frac{1}{(t-1)^{2\ell}} \end{align*} and, by differentiating with respect to $t$, \begin{equation*} \sum_{n=m}^\infty B_{n,k}(2!,3!,\dotsc,(n-k+2)!)\frac{t^{n-m}}{(n-m)!} =\frac1{k!}\sum_{\ell=0}^k(-1)^{k-\ell} \binom{k}{\ell}(-1)^m\frac{(2\ell+m-1)!}{(2\ell-1)!}\frac{1}{(t-1)^{2\ell+m}} \end{equation*} for $m\ge k\ge0$. Further letting $t\to0$ in the above equation yields the formula \eqref{Bell-2!-3!}.

References

  1. C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
  2. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., 1974; available online at https://doi.org/10.1007/978-94-010-2196-8.
  3. F. Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contrib. Discrete Math. 11 (2016), no. 1, 22--30; available online at https://doi.org/10.11575/cdm.v11i1.62389.
  4. F. Qi and B.-N. Guo, Explicit and recursive formulas, integral representations, and properties of the large Schroder numbers, Kragujevac J. Math. 41 (2017), no. 1, 121--141; available online at https://doi.org/10.5937/KgJMath1701121F.
  5. Feng Qi, Da-Wei Niu, Dongkyu Lim, and Yong-Hong Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, Journal of Mathematical Analysis and Applications 491 (2020), no. 2, Paper No. 124382, 31 pages; available online at https://doi.org/10.1016/j.jmaa.2020.124382.
  6. F. Qi, X.-T. Shi, and B.-N. Guo, Two explicit formulas of the Schroder numbers, Integers 16 (2016), Paper No. A23, 15 pages.
qifeng618
  • 1,691