Equation of first ellipse=>
$$\dfrac {((x-xFirstEllipseCenterPoint)\cdot \cos(A)+(y-yFirstEllipseCenterPoint)\cdot \sin(A))^2}{(a_1^2)}+\dfrac{((x-xFirstEllipseCenterPoint)\cdot \sin(A)-(y-yFirstEllipseCenterPoint)\cdot \cos(A))^2}{(b_1^2)}=1$$
Equation of the second ellipse=>
$$\dfrac {((x-xSecondEllipseCenterPoint)\cdot \cos(B)+(y-ySecondEllipseCenterPoint)\cdot \sin(B))^2}{(a_2^2)}+\dfrac{((x-xSecondEllipseCenterPoint)\cdot \sin(B)-(y-ySecondEllipseCenterPoint)\cdot \cos(B))^2}{(b_2^2)}=1$$
I know that the ellipse will intersect at
- One Point
- Two Point
- Three Point
- Four Point
- No intersection at all
Is there a general set of equation to solve the same.