Since the OP stated in the comments that they successfully applied Parseval's/Plancherel's theorem, I'm going to evaluate a generalization.
Similar to my answer here, we can use the integral representation $$K_{\alpha}(x) K_{\beta}(x) = 2\int_0^\infty K_{\alpha + \beta} (2x \cosh t) \cosh \left((\alpha - \beta)t \right) \, \mathrm dt, \quad x >0,$$ to evaluate the Mellin transform $$I(s,\alpha, \beta) = \int_0^\infty x^{2s-1} K_{2 \alpha}(x) K_{2 \beta}(x) \, \mathrm dx \, , \quad \left( \alpha, \beta \ge 0, \, s > \alpha + \beta \right). $$
All we need is the following integral formula, where $s > |\nu|$:
$$\begin{align} \int_{0}^{\infty} \frac{\cosh(2 \nu t)}{\cosh^{2s}(t)} \, \mathrm dt &= \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cosh(2 \nu t)}{\cosh^{2s}(t)} \, \mathrm dt \\ &= 2^{2(s-1)} \int_{0}^{\infty} \frac{u^{2 \nu+ 2 s-1} + u^{-2 \nu+ 2s -1}}{\left(u^{2}+1 \right)^{2s}} \, \mathrm du \\ &= \frac{2^{2(s-1)}}{2} \int_{0}^{\infty} \frac{w^{\nu+ s-1} + w^{- \nu +s -1}}{(w+1)^{2 s}} \, \mathrm dw \\ &\overset{(1)}{=} \frac{2^{2(s-1)}}{2} \, \left(B(s+\nu, s- \nu) + B(s-\nu, s+ \nu) \right) \\ &= 2^{2(s-1)} \, B (s+ \nu, s-\nu). \end{align} $$
Then $$ \begin{align} I(s,\alpha, \beta) &= \int_0^\infty x^{2s-1} K_{2 \alpha}(x) K_{2 \beta}(x) \, \mathrm dx \\ &= 2 \int_0^\infty x^{2s-1} \int_{0}^{\infty} K_{2(\alpha+ \beta)}(2x \cosh t) \cosh \left(2(\alpha -\beta)t \right) \, \mathrm dt \, \mathrm dx \\ &\overset{(2)}{=} 2 \int_0^\infty x^{2s-1} \int_0^\infty \cosh \left(2(\alpha - \beta)t \right) \int_0^\infty e^{-2x \cosh (t) \cosh (v)} \cosh \left(2(\alpha + \beta)v \right) \, \mathrm dv \, \mathrm dt \, \mathrm dx \\ &= 2 \int_0^\infty \cosh \left(2(\alpha + \beta)v \right) \int_0^\infty \cosh \left(2(\alpha - \beta)t \right) \int_0^\infty x^{2s-1}e^{-2x \cosh (t) \cosh (v)} \, \mathrm dx \, \mathrm dt \, \mathrm dv \\ &\overset{(3)}{=} \frac{\Gamma(2s)}{2^{2s-1}} \left(\int_0^\infty \frac{\cosh \left(2(\alpha + \beta)v \right)}{\cosh^{2s}(v)} \, \mathrm dv\right) \left( \int_0^\infty \frac{\cosh \left(2(\alpha - \beta)t \right)}{\cosh^{2s}(t)} \, \mathrm dt \right) \\ &= \frac{ \Gamma(2s)}{2^{2s-1}} \, \left(2^{2s-2} \right)^2 \, B \left(s + \alpha + \beta, s- \alpha - \beta \right) B \left(s+ \alpha - \beta, s - \alpha + \beta \right) \\ &= \frac{2^{2s-3}}{\Gamma(2s)} \, \Gamma \left(s+ \alpha + \beta \right) \Gamma \left(s- \alpha - \beta \right) \Gamma \left(s+ \alpha - \beta \right) \Gamma \left(s- \alpha + \beta \right). \end{align}$$
For $s= \frac{3}{2}$ and $\alpha = \beta =\frac{1}{2} $, we have $$\int_{0}^{\infty} x^{2}K_{1}(x)^{2} \, \mathrm dx = \frac{1}{\Gamma(3)} \, \Gamma \left(\frac{5}{2} \right) \Gamma \left(\frac{1}{2} \right) \Gamma \left(\frac{3}{2} \right)^{2} = \frac{1}{2} \, \left(\frac{3\pi^{2}}{16} \right) = \frac{3 \pi^{2}}{32}. $$
$(1)$ https://en.wikipedia.org/wiki/Beta_function#Other_identities_and_formulas
$(2)$ https://dlmf.nist.gov/10.32.E9
$(3)$ $\int_{0}^{\infty} x^{s-1} e^{-ax} \, \mathrm dx = a^{-s} \, \Gamma(s), \quad a>0 $