Let $z_1,z_2,z_3$ be complex numbers such that $|z_1|=|z_2|=|z_3|=|z_1+z_2+z_3|=2$ and $|z_1–z_2| =|z_1–z_3|$,$(z_2 \ne z_3)$, then the value of $|z_1+z_2||z_1+z_3|$ is_______
My solution is as follow
${z_1} = 2{e^{i{\theta _1}}};{z_2} = 2{e^{i{\theta _2}}};{z_3} = 2{e^{i{\theta _3}}}$ & $Z = {z_1} + {z_2} + {z_3} = 2\left( {{e^{i{\theta _1}}} + {e^{i{\theta _2}}} + {e^{i{\theta _3}}}} \right)$
$\left| {{z_1} - {z_2}} \right| = \left| {{z_1} - {z_3}} \right| \Rightarrow \left| {{e^{i{\theta _1}}} - {e^{i{\theta _2}}}} \right| = \left| {{e^{i{\theta _1}}} - {e^{i{\theta _3}}}} \right|$
Let ${\theta _1} = 0$
$\left| {{z_1} - {z_2}} \right| = \left| {{z_1} - {z_3}} \right| \Rightarrow \left| {1 - \left( {\cos {\theta _2} + i\sin {\theta _2}} \right)} \right| = \left| {1 - \left( {\cos {\theta _3} + i\sin {\theta _3}} \right)} \right|$
$ \Rightarrow \left| {1 - \cos {\theta _2} - i\sin {\theta _2}} \right| = \left| {1 - \cos {\theta _3} - i\sin {\theta _3}} \right| \Rightarrow \left| {2{{\sin }^2}\frac{{{\theta _2}}}{2} - 2i\sin \frac{{{\theta _2}}}{2}\cos \frac{{{\theta _2}}}{2}} \right| = \left| {2{{\sin }^2}\frac{{{\theta _3}}}{2} - 2i\sin \frac{{{\theta _3}}}{2}\cos \frac{{{\theta _3}}}{2}} \right|$
$\Rightarrow \left| { - 2{i^2}{{\sin }^2}\frac{{{\theta _2}}}{2} - 2i\sin \frac{{{\theta _2}}}{2}\cos \frac{{{\theta _2}}}{2}} \right| = \left| { - 2{i^2}{{\sin }^2}\frac{{{\theta _3}}}{2} - 2i\sin \frac{{{\theta _3}}}{2}\cos \frac{{{\theta _3}}}{2}} \right| \Rightarrow \left| { - 2i\sin \frac{{{\theta _2}}}{2}\left( {\cos \frac{{{\theta _2}}}{2} + i\sin \frac{{{\theta _2}}}{2}} \right)} \right| = \left| { - 2i\sin \frac{{{\theta _3}}}{2}\left( {\cos \frac{{{\theta _3}}}{2} + i\sin \frac{{{\theta _3}}}{2}} \right)} \right|$
$ \Rightarrow \left| { - 2i\sin \frac{{{\theta _2}}}{2}\left( {{e^{i\frac{{{\theta _2}}}{2}}}} \right)} \right| = \left| { - 2i\sin \frac{{{\theta _3}}}{2}\left( {{e^{i\frac{{{\theta _3}}}{2}}}} \right)} \right|$
$ \Rightarrow \left| {2\sin \frac{{{\theta _2}}}{2}\left( {{e^{ - i\frac{\pi }{2}}}} \right)\left( {{e^{i\frac{{{\theta _2}}}{2}}}} \right)} \right| = \left| {2\sin \frac{{{\theta _3}}}{2}\left( {{e^{ - i\frac{\pi }{2}}}} \right)\left( {{e^{i\frac{{{\theta _3}}}{2}}}} \right)} \right| \Rightarrow \left| {2\sin \frac{{{\theta _2}}}{2}\left( {{e^{i\left( {\frac{{{\theta _2}}}{2} - \frac{\pi }{2}} \right)}}} \right)} \right| = \left| {2\sin \frac{{{\theta _3}}}{2}\left( {{e^{i\left( {\frac{{{\theta _3}}}{2} - \frac{\pi }{2}} \right)}}} \right)} \right|$
$\Rightarrow \left| {2\sin \frac{{{\theta _2}}}{2}} \right|\left| {\left( {{e^{i\left( {\frac{{{\theta _2}}}{2} - \frac{\pi }{2}} \right)}}} \right)} \right| = \left| {2\sin \frac{{{\theta _3}}}{2}} \right|\left| {\left( {{e^{i\left( {\frac{{{\theta _3}}}{2} - \frac{\pi }{2}} \right)}}} \right)} \right| \Rightarrow \left| {2\sin \frac{{{\theta _2}}}{2}} \right| = \left| {2\sin \frac{{{\theta _3}}}{2}} \right|$
${\theta _2} \ne {\theta _3}$
How do I proceed further?