Let $0=t_0<t_1<\cdots <t_N=T$ be an arbitrary partition of the interval $[0,T]$ with $\|\pi\|:=\max_{i} |t_{i+1}-t_i|$.
Define $t^*_i:=\frac{t_{i+1}+t_i}{2}$ and consider
\begin{align*}
&\sum_{i=0}^{N-1}W\left(t_i^*\right)[W(t_{i+1})-W(t_i)]\\
&=\sum_{i=0}^{N-1}[W(t_i^*)-W(t_i)][W(t_{i+1})-W(t_i)]+\sum_{i=0}^{N-1} W(t_i)[W(t_{i+1})-W(t_i)]=\mathcal I_1+\mathcal I_2
\end{align*}
We know that as $\|\pi\|\to 0$ the term $\mathcal I_2$ converges to $\int_0^T W(t)dW(t)$ in $L^2(\Omega)$.
In order to prove the desired result it suffices to show that $\mathcal I_1$ converges in $L^2(\Omega)$ to $T/2$.
We start by noticing that
\begin{align*}
\mathbb E\left[\mathcal I_1\right]=\sum_{i=0}^{N-1}\mathbb E\left([W(t_i^*)-W(t_i)][W(t_{i+1})-W(t_i)]\right)&=\sum_{i=0}^{N-1} t_i^*\wedge t_{i+1}-t_i\wedge t_{i+1}-t_i^*\wedge t_{i}+t_i\\
&=\sum_{i=0}^{N-1}t_i^*-t_i=\sum_{i=0}^{N-1}\frac{t_{i+1}-t_i}{2}=T/2
\end{align*}
Then
\begin{align*}
\|\mathcal I_1-T/2\|_{L^2(\Omega)}^2= \mathbb V\left(\mathcal I_1\right)=\mathbb V\left(\sum_{i=0}^{N-1}[W(t_i^*)-W(t_i)][W(t_{i+1})-W(t_i)]\right),
\end{align*}
due to the disjointness of the intervals in each term of the sum we can write the latter as
\begin{align*}
\|\mathcal I_1-T/2\|_{L^2(\Omega)}^2= \mathbb V\left(\mathcal I_1\right)&=\sum_{i=0}^{N-1}\mathbb V\left([W(t_i^*)-W(t_i)][W(t_{i+1})-W(t_i)]\right)\\
&=\sum_{i=0}^{N-1}\mathbb V\left([W(t_i^*)-W(t_i)][(W(t_{i+1})-W(t_i^*))+(W(t_i^*)-W(t_i))]\right)
\end{align*}
Let $\Delta_*(i):=[W(t^*_i)-W(t_i)]$ and $\Delta^*(i):=[W(t_{i+1})-W(t^*_i)]$
\begin{align*}
&\sum_{i=0}^{N-1}\mathbb V\left(\Delta_*(i)[\Delta^*(i)+\Delta_*(i)]\right)\\
&=\sum_{i=0}^{N-1}\mathbb E\left(\Delta_*(i)^2[\Delta^*(i)+\Delta_*(i)]^2\right)- (t_i^*-t_i)^2\\
&=\sum_{i=0}^{N-1}\mathbb E\left(\Delta_*(i)^2[\Delta^*(i)^2+2\Delta^*(i)\Delta_*(i)+\Delta_*(i)^2]\right)- (t_i^*-t_i)^2\\
&=\sum_{i=0}^{N-1}\mathbb E\left(\Delta_*(i)^2\Delta^*(i)^2\right)+2E\left(\Delta^*(i)\Delta_*(i)^3\right)+\mathbb E\left(\Delta_*(i)^4\right)- (t_i^*-t_i)^2\\
&=\sum_{i=0}^{N-1}\mathbb E\left(\Delta_*(i)^2\Delta^*(i)^2\right)+\mathbb E\left(\Delta_*(i)^4\right)- (t_i^*-t_i)^2\\
&=\sum_{i=0}^{N-1} (t_i^*-t_i)(t_{i+1}-t_i^*)+3(t_i^*-t_i)^2- (t_i^*-t_i)^2\\
&=\sum_{i=0}^{N-1} (t_i^*-t_i)(t_{i+1}-t_i^*)+2(t_i^*-t_i)^2
\end{align*}
Now notice that
\begin{align*}
(t_{i+1}-t_i^*)(t_i^*-t_i)= \left(t_{i+1}-\frac{t_i+t_{i+1}}{2}\right)\left(\frac{t_i+t_{i+1}}{2}-t_i\right)=\frac{(t_{i+1}-t_i)^2}{4},
\end{align*}
and
\begin{align*}
(t_i^*-t_i)^2=\frac{(t_{i+1}-t_i)^2}{4}
\end{align*}
and thus the latter equals
\begin{align*}
\frac{3}{4}\sum_{i=0}^{N-1} (t_{i+1}-t_i)^2\leq \frac{3}{4}\|\pi\|\sum_{i=0}^{N-1} (t_{i+1}-t_i)=\frac{3}{4}\|\pi\|T
\end{align*}
and the last term on the right vanished as $\|\pi\|\to 0$.
EDIT:
An interesting property is that if we replace the standard product $\times$ in
$$\sum_{i=0}^{N-1}W\left(t_i^*\right)\times [W(t_{i+1})-W(t_i)],$$
with the so-called Wick product "$\diamond$", then the choice of the evaluation point is irrelevant in fact
$$\sum_{i=0}^{N-1}W\left(t_i^{\alpha}\right)\diamond [W(t_{i+1})-W(t_i)]\to \int_0^T W(t)dW(t)$$
where $t_i^{\alpha}:=[1-\alpha]t_{i}+\alpha t_{i+1}$ for any choice of $\alpha\in [0,1]$.
This is due to the fact that the Wick product is somehow implicit in the Itô integration via the formula
$$\int_0^T f(W(t))dW(t)=\int_0^T f(W(t))\diamond \dot W(t)dt$$
where $\dot W(t)$ denotes the distributional derivative of the Brownian motion (i.e. a white noise process).