Evaluate $\displaystyle \int_0^{\pi/2}\sin (2nx)\cot x dx$
$$\sin (2nx)\cot x=\frac{\sin (2nx)}{\sin x}\cos x$$
I know that
$$\frac{\sin (\frac{k\beta}{2})}{\sin (\frac{\beta}{2})}\cos\left(\alpha+\frac{k-1}{2}\beta\right)=\cos\alpha+\cos(\alpha+\beta)+\cos(\alpha+2\beta)+\cdots+\cos(\alpha+(k-1)\beta)$$
So comparing between $\frac{\sin (2nx)}{\sin x}\cos x$ and $\frac{\sin (\frac{k\beta}{2})}{\sin (\frac{\beta}{2})}\cos\left(\alpha+\frac{k-1}{2}\beta\right)$ I got $\beta=2x$, $k=2n$ and $\alpha=-(2n-2)x$.
Therefore,
$$\begin{align*}\frac{\sin (2nx)}{\sin x}\cos x&=\cos(-[2n-2]x)+\cos(-[2n-2]x+2x)+\cos(-[2n-2]x+4x)+\cdots+\cos(2nx)\\&=\cos0+\cos(2nx)+2[\cos(2x)+\cos(4x)+\cdots+\cos((2n-2)x)]\\&=1+\cos(2nx)+2[\cos(2x)+\cos(4x)+\cdots+\cos((2n-2)x)]\end{align*}$$
$$\int_0^{\pi/2}\cos 2kx dx=0$$
$$\implies\int_0^{\pi/2}\sin (2nx)\cot x dx=\int_0^{\pi/2}dx=\frac{\pi}{2}$$
Can someone provide an alternative solution without using summation of cosines. Thanks in advance.