Given $a, b \in \mathbb{R},$ prove $ab = 0 \implies (a=0 \lor b=0).$
Is the following valid?
Proceed by contraposition. The contrapositive of $ab = 0 \implies (a=0 \lor b=0)$ is $(a \neq 0 \land b \neq 0) \implies ab \neq 0.$
Proceed by contradiction. Suppose $a \neq 0 \land b \neq 0$ and, for contradiction, assume that $ab = 0.$ Taking $(ab = 0) \times \frac1a$ gives $b = 0$, which contradicts the supposition that $b \neq 0.$ Therefore $ab \neq 0,$ thus $(a \neq 0 \land b \neq 0) \implies ab \neq 0.$
Therefore, by contraposition, $ab = 0 \implies (a=0 \lor b=0).$