I am writing a second answer rather than appending or replacing my first answer, mainly as a comparison. I gave my first answer because the OP said they were not comfortable with Beta Functions. I am afraid that the complexity of that answer may not have done much to relieve their discomfort.
I was able to simplify and greatly extend the scope the answer. Equation $(6)$ converts any integral of the product of powers of $\log(\sin(x))$ and $\log(\cos(x))$ into a derivative of the Beta Function at $\left(\frac12,\frac12\right)$ and $(4)$ and $(5)$ facilitate the computation and evaluation of these derivatives.
Derivatives of the Beta Function at $\boldsymbol{\left(\frac12,\frac12\right)}$
Using
$$
H_x^{(n)}=\sum\limits_{k=1}^\infty\!\left(\frac1{k^n}-\frac1{(k+x)^n}\right)\tag1
$$
we get that
$$
\begin{align}
H_0^{(n)}&=0\tag{2a}\\[9pt]
H_{-1/2}&=-2\log(2)&\text{for }n=1\tag{2b}\\[9pt]
H_{-1/2}^{(n)}&=\left(2-2^n\right)\zeta(n)&\text{for }n\ge2\tag{2c}\\[3pt]
\frac{\mathrm{d}}{\mathrm{d}x}H_x^{(n)}&=n\!\left(\zeta(n+1)-H_x^{(n+1)}\right)\tag{2d}
\end{align}
$$
Define
$$
\begin{align}
A_{n,0}(x,y)&=\frac{(n-1)!}{(-1)^{n-1}}\left(H_{x-1/2}^{(n)}-H_{x+y}^{(n)}\right)\tag{3a}\\
A_{0,m}(x,y)&=\frac{(m-1)!}{(-1)^{m-1}}\left(H_{y-1/2}^{(m)}-H_{x+y}^{(m)}\right)\tag{3b}\\
A_{n,m}(x,y)&=\frac{(m+n-1)!}{(-1)^{m+n-1}}\left(\zeta(m+n)-H_{x+y}^{(m+n)}\right)\tag{3c}\\
\end{align}
$$
Then we have
$$
\begin{align}
\partial_x\mathrm{B}\!\left(x+\tfrac12,y+\tfrac12\right)
&=A_{1,0}(x,y)\,\mathrm{B}\!\left(x+\tfrac12,y+\tfrac12\right)\tag{4a}\\[9pt]
\partial_y\mathrm{B}\!\left(x+\tfrac12,y+\tfrac12\right)
&=A_{0,1}(x,y)\mathrm{B}\!\left(x+\tfrac12,y+\tfrac12\right)\tag{4b}\\[9pt]
\partial_xA_{n,m}(x,y)
&=A_{n+1,m}(x,y)\tag{4c}\\[9pt]
\partial_yA_{n,m}(x,y)
&=A_{n,m+1}(x,y)\tag{4d}
\end{align}
$$
Explanation:
$\text{(4a)}$: $\frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(x))=H_{x-1}-\gamma$ (from this answer)
$\phantom{\text{(4c):}}$ $\mathrm{B}(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ (property of the Beta Function)
$\text{(4b)}$: same as $\text{(4a)}$
$\text{(4c)}$: apply $\text{(2d)}$ and $(3)$
$\text{(4d)}$: apply $\text{(2d)}$ and $(3)$
$$
\begin{align}
\mathrm{B}\!\left(\tfrac12,\tfrac12\right)
&=\pi\tag{5a}\\[9pt]
A_{1,0}(0,0)&=A_{0,1}(0,0)
=-2\log(2)\tag{5b}\\[6pt]
A_{n,0}(0,0)&=A_{0,n}(0,0)
=\frac{(n-1)!}{(-1)^{n-1}}\left(2-2^n\right)\zeta(n)&\text{for }n\ge2\tag{5c}\\
A_{n,m}(0,0)
&=\frac{(m+n-1)!}{(-1)^{m+n-1}}\zeta(m+n)&\text{for }m,n\ge1\tag{5d}
\end{align}
$$
Explanation:
$\text{(5a)}$: $\Gamma\!\left(\frac12\right)=\sqrt\pi$
$\text{(5b)}$: apply $\text{(2b)}$ and $\text{(3a)}$ and $\text{(3b)}$
$\text{(5c)}$: apply $\text{(2c)}$ and $\text{(3a)}$ and $\text{(3b)}$
$\text{(5d)}$: apply $\text{(2a)}$ and $\text{(2d)}$ and $\text{(3c)}$
$(4)$ and the product rule give any order derivative of $\mathrm{B}(x,y)$.
$(5)$ allows evaluation at $(x,y)=(0,0)$.
The Integral of Products of Powers of $\boldsymbol{\log(\sin(x))}$ and $\boldsymbol{\log(\cos(x))}$
Once we have $(4)$ and $(5)$, we can fairly easily compute the following integral:
$$
\begin{align}
&\int_0^{\pi/2}\log^a(\sin(x))\log^b(\cos(x))\,\mathrm{d}x\\[3pt]
&=\int_0^1\frac{\log^a(x)\log^b\left(\sqrt{1-x^2}\right)}{\sqrt{1-x^2}}\,\mathrm{d}x\tag{6a}\\[3pt]
&=\frac1{2^{a+b+1}}\int_0^1\frac{\log^a(x)\log^b(1-x)}{\sqrt{x(1-x)}}\,\mathrm{d}x\tag{6b}\\
&=\frac{\partial_1^a\partial_2^b\mathrm{B}\!\left(\frac12,\frac12\right)}{2^{a+b+1}}\tag{6c}
\end{align}
$$
Explanation:
$\text{(6a)}$: substitute $x\mapsto\arcsin(x)$
$\text{(6b)}$: substitute $x\mapsto\sqrt{x}$
$\text{(6c)}$: write the integral as derivatives of the Beta Function
Let's do an example of using $(4)$ to compute $\partial_1\partial_2^2\mathrm{B}\!\left(\frac12,\frac12\right)$. For ease of notation, we will write $\mathrm{B}$ for $\mathrm{B}\!\left(\frac12,\frac12\right)$, and $A_{n,m}$ for $A_{n,m}(0,0)$.
$$
\begin{align}
\partial_2\mathrm{B}&=A_{0,1}\mathrm{B}\tag{7a}\\
\partial_2^2\mathrm{B}&=\left(A_{0,2}+A_{0,1}^2\right)\mathrm{B}\tag{7b}\\
\partial_1\partial_2^2\mathrm{B}&=\left(\left(A_{0,2}+A_{0,1}^2\right)A_{1,0}+A_{1,2}+2A_{0,1}A_{1,1}\right)\mathrm{B}\tag{7c}\\
&=\left(\left(2\zeta(2)+4\log^2(2)\right)(-2\log(2))+2\zeta(3)+2(-2\log(2))(-\zeta(2))\right)\pi\tag{7d}\\
&=\left(2\zeta(3)-8\log^3(2)\right)\pi\tag{7e}
\end{align}
$$
Explanation:
$\text{(7a)}$: apply $\text{(4b)}$
$\text{(7b)}$: apply $\text{(4b)}$ and $\text{(4d)}$ with the product rule
$\text{(7c)}$: apply $\text{(4a)}$ and $\text{(4c)}$ with the product rule
$\text{(7d)}$: apply $(5)$
$\text{(7e)}$: simplify
$(6)$ and $(7)$ give
$$
\int_0^{\pi/2}\log(\sin(x))\log^2(\cos(x))\,\mathrm{d}x=\frac\pi{16}\left(2\zeta(3)-8\log^3(2)\right)\tag8
$$
Answer to the Question
Finally, we get to the answer for the question.
$$
\begin{align}
\int_0^1\frac{\log(x)\log^2\left(1-x^2\right)}{\sqrt{1-x^2}}\,\mathrm{d}x
&=4\int_0^{\pi/2}\log(\sin(x))\log^2(\cos(x))\,\mathrm{d}x\tag{9a}\\
&=\frac\pi2\left(\zeta(3)-4\log^3(2)\right)\tag{9b}
\end{align}
$$
Explanation:
$\text{(9a)}$: substitute $x\mapsto\sin(x)$
$\text{(9b)}$: apply $(8)$