How are you defining the Riemann integral? Your statement appears in some textbooks as the definition of the Riemann intergral (See definition 3 below).
If you are using refinement of partitions to define the Riemann integral (see definitions (1) and/or (2) below) some additional considerations need to be argue as partitions $P$ and $Q$, with small $\|P\|, \|Q\|$ may not have many points in common which makes their comparison a little tricky.
In the rest of my posting I state three common definitions of Riemann integral. The proof of their equivalences solves the OP.
A partition $\mathcal{P}$ of $[a,b]$ is a finite collection of points $a=x_0<x_1<\ldots<x_n=b$. Given a partition $\mathcal{P}=\{a=x_0<\ldots<x_n=b\}$ of $[a,b]$, a set of tags for $\mathcal{P}$ is collection $\tau$ of points $t_j$, $1\leq j\leq n$ such that $t_j\in[x_{j-1},x_j]$. The pair $(\mathcal{P},\tau)$, where $\mathcal{P}$ is a partition of $[a,b]$ and $\tau$ is a collection of tags for $\mathcal{P}$, is called a tagged partition.
Suppose $f$ is a bounded function on $[a,b]$, and let $(\mathcal{P},\tau)$ be a tagged partition of $[a,b]$, $\mathcal{P}=\{a=x_0<\ldots<x_n=b\}$, $\tau=\{t_j:1\leq j\leq n\}$, $t_j\in[x_{j-1},x_j]$.
Define
$$\begin{align}
U(f,P)&=\sum^n_{j=1}M_j(x_j-x_{j-1})\\
L(f,P)&=\sum^n_{j=1}m_j(x_j-x_{j-1})\\
S(f,P,\tau)&=\sum^n_{j=1}f(t_j)(x_j-x_{j-1})
\end{align}$$
where $M_j=\sup_{x_{j-1}\leq x\leq x_j}f(x)$, and $m_j=\inf_{x_{j-1}\leq x\leq x_j}f(x)$.
It is clear that
$$L(f,P)\leq S(f,P,\tau)\leq U(f,P)$$
Defintion 1. (Darboux) $f$ is Riemann integrable over the bounded interval $[a,b]$ if
$$\sup_P L(f,P)=\inf_P U(f,P)$$
where the $\sup$ and $\inf$ are taking aver all (finite) partitions of $[a,b]$.
The common value, say $I$, is called integral of $f$ and denoted $\int^b_a f$.
Notice that in general $-m(b-a)\leq\sup_PL(f,P)\leq\inf_P U(f,U)\leq M(b-a)$.
where $m=\inf_xf(x)$ and $M=\sup_xf(x)$.
Definitions 2. $f$ is Riemann integrable over the bounded interval $[a,b]$ if there exists $I\in\mathbb{R}$ such that
$$\lim_{P}S(f,P,\tau)=I$$
Meaning that for any $\varepsilon>0$, there is a partition $P_\varepsilon$ such that for any refinement $P$ of $P_\varepsilon$ (i.e, $P$ for any partition containing $P_\varepsilon$), and any set of set of tags $\tau$ for $\mathcal{P}$
$$
|S(f,P,\tau)-I|<\varepsilon
$$
Definition 3. (Riemann) $f$ is Riemann integrable over the bounded interval $[a,b]$ if there exists $I\in\mathbb{R}$ such that
$$\lim_{\|P\|\rightarrow0}S(f,P,\tau)=I$$
Meaning that for any $\varepsilon>0$, there is $\delta>0$ such that for any tagged partition $(P,\tau)$ with $\|P\|=\sup(x_{i+1}-x_i)<\delta$
$$
|S(f,P,\tau)-I|<\varepsilon
$$
Equivalencies
Equivalence between definitions (1) and (2) is the simplest of all.
Definition (1) implies Definition (2): For any $\varepsilon>0$, there is a partition $P_\varepsilon>0$ with
$$ U(f,P_\varepsilon)-L(f,P_\varepsilon)<\varepsilon$$
Notice that for any partitions $P$ and $P'$ of $[a,b]$
$$
L(f,P)\leq L(f,P\cup P')\leq S(f,P\cup P',\{t_i\}),I\leq U(f,P\cup P')\leq U(f,P')
$$
Hence, for any partition $P$ containing $P_\varepsilon$, and any set of tags $\tau$ for $P$
$$
|S(f,P,\tau)-I|\leq U(f,P)-L(f,P)<\varepsilon
$$
Definition (2) implies Definition (1): For any $\varepsilon>0$, there is a partition $P_\varepsilon$ such that
$$
I-\varepsilon/3 < S(f,P,\{t_i\})<I+\varepsilon/3
$$
for all partitions $P$ containing $P_\varepsilon$ and any choice of $\{t_i:t_i\in[x_i,x_{i+1}], P=\{x_i\}\}$. Taking infimum and supremum over all choices of points $\{t_i\}$ adapted to the partition $P$ we obtain
$$
I-\varepsilon/3 \leq L(f,P)\leq U(f,P)\leq I+\varepsilon/3
$$
for all partitions $P$ containing $P_\varepsilon$. The rest follows immediately by observation made at the beginning of this discussion.
The equivalence (1) and (3) requires some extra work.
Definition (3) implies Definition (1): For any $\varepsilon>0$ there is $\delta>0$ such that for any tagged partition $(P,\tau)$ with $\|P\|<\delta$
$$I-\varepsilon< S(f,P,\tau)<I+\varepsilon$$
Taking supremum over all possible tags $\tau$ addapted to $P$ yields
$$I-\varepsilon\leq L(f,P)\leq S(f,P)\leq U(f,P_\varepsilon)\leq I+\varepsilon$$
for all partition $P$ with $\|P\|<\delta$.
Fix one such partition $P_0$. For any partition $Q$, $P'=P_0\cup Q$ is a refinement and $\|P'\|\leq \|P_0\|$; hence
$I-\varepsilon\leq U(f,P')\leq U(f,Q)$ and $L(f,Q)\leq L(f,P')\leq I+\varepsilon$ whence it follows that
$$I-\varepsilon\leq \inf_Q U(f,Q),\qquad \sup_Q L(f,Q)\leq I+\varepsilon$$
for all $\varepsilon>0$; therefore, $\sup_QL(f,Q)=I=\inf_QU(f,Q)$.
Definition (1) implies Definition (3): This is a direct consequence of the following result
Lemma A: For any bounded function $f$ on $[a,b]$
\begin{align}
\lim_{\|P\|\rightarrow0}U(f,P)&=\inf_PU(f,P)\\
\lim_{\|P\|\rightarrow0}L(f,P)&=\sup_PL(f,P)
\end{align}
Proof of Lemma A:
Let $M=\|f\|_\infty$; denote by $\overline{I}=\inf_PU(f,P)$ and $\underline{I}=\sup_PL(f,P)$. Given $\varepsilon>0$ choose $P_\varepsilon$ such that
$$U(f,P_\varepsilon)\leq \overline{I}+\varepsilon,\qquad \underline{I}-\varepsilon<L(f,P_\varepsilon)$$
Let $P_\varepsilon=\{a=t_0<\ldots<t_m=b\}$. Suppose $P$ is a partition with
$$\|P\|<\delta:=\min(1,\varepsilon)\cdot\min\{t_k-t_{k-1}:1\leq k\leq m\}$$
Consider the refinement $P'=P\cup P_\varepsilon$ of $P$ and $P_\varepsilon$.
There are two types of subintervals in $P$: those that are included in a subinterval of $P_\varepsilon$, which we denote by $P^g$, and those that are not, which we denote by $P^b$. Each subinterval in $P^g$ is also a subinterval in $P'$. On the other hand, each subinterval $J=[x_{j-1},x_j]\in P^b$ gets partitioned in exactly two subintervals by point in $P_\varepsilon$. It follows that
$$0\leq U(f,P)-U(f,P')\leq \sum_{J=[x_{j-1},x_j]\in P^b}2M(x_j-x_{j-1})<2M\varepsilon(b-a)$$
Consequently
$$ \overline{I}\leq U(f,P)\leq U(f,P')+2M\varepsilon(b-a)<U(f,P_\varepsilon)+2M\varepsilon(b-a)<\overline{I}+\varepsilon(1+2M(b-a))
$$
Letting $\varepsilon\rightarrow0$ we get that $\lim_{\|P\|\rightarrow0}U(f,P)=\overline{I}$. A similar prove can be obtained for $\lim_{\|P\|\rightarrow0}L(f,P)=\underline{I}$.
Notes:
Lemma $A$ along with the equivalences between the definition of Riemann integral discussed above yields a seemingly simpler definition of the Riemann integral.
Proposition (4): Let $P_n=\{a+\tfrac{k(b-a)}{n}:0\leq k\leq n\}$. A bounded function $f$ on $[a,b]$ is Riemann integrable iff
$$\lim_{n\rightarrow\infty}\frac{b-a}{n}\sum^n_{k=1}f(t_{nk})$$
exists and is independent of the tags $\tau_n=\{t_{nk}:1\leq k\leq n\}$ with $a+\frac{(k-1)(b-a)}{n}\leq t_{nk}\leq a+\tfrac{k(b-a)}{n}$. The common value $I=\int^b_af$.