Not really an answer but too long for a comment:
The integrand equals $$\frac1s \left( \frac1{\zeta(e s)} - \frac1{\zeta(\pi s)}\right).$$
As we know, $$\frac1{\zeta(s)} = \sum_{n=1}^\infty \mu(n) n^{-s},$$ so the integral equals
$$\sum \frac{\mu(n)}s \left(n^{- e s} - n^{-\pi s}\right).$$ Presumably this gives us a series of something reasonable.
Now, $$\int_0^\infty(a^s-b^s)/s d s = \frac{1}{2} \left(\log \left(\frac{1}{\log (a)}\right)-\log (\log (a))-\log
\left(\frac{1}{\log (b)}\right)+\log (\log (b))\right)\text{ if }\Re(\log (a))\leq
0\land \Re(\log (b))\leq 0\land \frac{\log (b)}{\log (a)}<1$$ which gives us a faint hope of a reasonable sum (though the $\mu(n)$ is not helpful).