1

I'm trying to improve my integration skills and was wondering if any of you have some neat ways to prove this. Thanks.

$$\int_{0}^{\infty} \frac{\zeta(\pi \cdot s) - \zeta(e \cdot s)}{ \zeta(\pi \cdot s) \zeta(e \cdot s) \cdot s }\,\mathrm{d}s = 3 + \ln\left(\frac{1}{\pi^3}\right)$$

VIVID
  • 11,604

2 Answers2

8

As also mentioned by metamorphy, we can use Frullani's formula here: $$\begin{align} \int_{0}^{\infty} \frac{\zeta(\pi x) - \zeta(e x)}{ \zeta(\pi x) \zeta(e x) \cdot x }\,\mathrm{d}x &= \int_0^\infty \frac{\frac{1}{\zeta(ex)} - \frac{1}{\zeta(\pi x)}}{x}\mathrm dx \\ &= \left(\frac{1}{\zeta(\infty)} - \frac{1}{\zeta(0)}\right)\ln\frac{e}{\pi} \\ &= \left(\frac{1}{1} - \frac{1}{-1/2}\right)\left(1 + \ln\frac{1}{\pi}\right) \\ &= 3 + \ln\frac{1}{\pi^3}\end{align}$$

VIVID
  • 11,604
1

Not really an answer but too long for a comment:

The integrand equals $$\frac1s \left( \frac1{\zeta(e s)} - \frac1{\zeta(\pi s)}\right).$$

As we know, $$\frac1{\zeta(s)} = \sum_{n=1}^\infty \mu(n) n^{-s},$$ so the integral equals $$\sum \frac{\mu(n)}s \left(n^{- e s} - n^{-\pi s}\right).$$ Presumably this gives us a series of something reasonable.

Now, $$\int_0^\infty(a^s-b^s)/s d s = \frac{1}{2} \left(\log \left(\frac{1}{\log (a)}\right)-\log (\log (a))-\log \left(\frac{1}{\log (b)}\right)+\log (\log (b))\right)\text{ if }\Re(\log (a))\leq 0\land \Re(\log (b))\leq 0\land \frac{\log (b)}{\log (a)}<1$$ which gives us a faint hope of a reasonable sum (though the $\mu(n)$ is not helpful).

Igor Rivin
  • 25,994
  • 1
  • 19
  • 40